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Abstract

Mathematical reasoning is regarded as a necessary ability for Language Models
(LMs). Recent works demonstrate large LMs’ impressive performance in solving
math problems. The success is attributed to their Chain-of-Thought (CoT) reason-
ing abilities, i.e., the ability to decompose complex questions into step-by-step
reasoning chains, but such ability seems only to emerge from models with abundant
parameters. This work investigates how to incorporate relatively small LMs with
the capabilities of multi-step reasoning. We propose to inject such abilities by
continually pre-training LMs on a synthetic dataset MSAT which is composed of
Multi-step Arithmetic Tasks. Our experiments on math word problem tasks show
the effectiveness of our method in enhancing LMs’ math reasoning abilities.'

1 Introduction

Making Language Models (LMs) perform mathe-
matical reasoning is a valuable, yet challenging re-
search objective [5, 3]. Recently, we have witnessed
large LMs’ impressive performance on math reason-
ing tasks via chain-of-thought prompting [21]. This
method elicits large LM’s ability to decompose a com-
plex problem into several intermediate steps. How-
ever, it is believed that such ability only emerges
from sufficiently large models (empirically more
than 100B parameters) [21]. In this paper, we ex-
amine how to incorporate moderate-sized LMs, e.g.,
RoBERTa [ 1 1], with such multi-step reasoning ability
via continual pre-training to improve the performance
on math problems.

Correctly understanding numbers is a pre-requisite of
mathematical reasoning abilities. But Wallace et al.
[19] shows that medium-sized LMs have a deficiency
in numerical comprehension. To overcome this issue,

Question: Roger has 5 tennis balls. He buys 2 more cans
<Num@> <Numl1>

of tennis balls. Each can have 3 tennis balls. How many

<Num2>

tennis balls does he have now?

[ Math expression: 5+2 X 3 Ans: 11

Chain-of-thought (Wei et al., 2022):
Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Code-style multi-step expression (ours):
No =2. N1=3.N2=N1*No. (step 1)

{ Symbolic expression: <Num@> + <Numl> x <Num2> J
N3 =5. Ans = N2 + N3. (step 2)

Figure 1: A math word problem example with
different kinds of answers. In Question, <Num0>,
<Num1>, and <Num2> are special tokens used for
masking numbers.

previous works inject numerical reasoning skills into LMs following two approaches. The first
is masking numbers with special tokens, and generating symbolic expressions with a structured
neural decoder [24, 7]. An example of such expression is provided in Fig. 1. The second strategy
continually pre-trains LMs on synthetic numerical tasks, which requires models to learn how to

perform computation involving numbers [4, 16].

'Our code and data are released at https://github. com/TianduoWang/MsAT.
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However, both approaches suffer from critical limitations. For symbolic methods, they neglect the
information carried by the numbers, which could provide crucial hints for solving math problems [23,
10]. As for continual pre-training methods, LMs’ arithmetic skills are not reliable. Previous works
indicate that such skills are highly influenced by the training data [17] and hard for extrapolation [19].

Motivated by these shortcomings, we propose to first pre-train LMs on a synthetic dataset called
MSAT (Multi-step Arithmetic Tasks) before fine-tuning on downstream tasks. To make sure LMs
capture the information carried by the numbers, we keep the numbers in the questions instead of
masking them. To avoid making LMs conduct computation internally, MSAT encourages LMs
to generate a series of intermediate steps that can be executed by an external Python interpreter.
Experiments on three math word problem datasets with two backbone models demonstrate the
effectiveness of our method in enhancing LMs’ math reasoning performance.

2 Method

Our method appends a continual pre-training No=2.N1=8. Ans=No+N1
stage before fine-tuning LMs on downstream

t
tasks. The continual pre-training serves two pur- lAdam] //.%//,/// / ‘)[A“mgmsive Demder]
7

poses: first, we tokenize numbers digit-by-digit
to improve LMs’ numerical comprehension; sec-
ond, we make LMs learn multi-step reasoning Y=8.Z=2. X-Y=Z. X=?
skills from the proposed synthetic task.

Figure 2: An illustration of the continual pre-training
process on our Seq2Seq model. We attach adapter mod-
2.1 Digit tokenization for numbers ules to each layer of LM encoder and fix LM’s param-
eters (shaded area) during pre-training. Tokens No, N1,
Sub-word tokenization methods, e.g., byte pair Ans in the output are the variable names only used by
encoding (BPE) [18], is one of the reasons why the decoder.
LMs poorly understand numbers [19]. BPE-
based tokenizers split text based on the token frequency in the training corpus, which can be counter-
intuitive when dealing with numbers. For example, numbers "520" and "521" will be tokenized into
['520"] and ["5", "21"] respectively by the RoBERTaTokenizer of the Transformers library [22].
Such inconsistent tokenization strategy for numbers undermines LM’s numerical understanding
ability. Hence, we tokenize numbers digit-by-digit for both pre-training and fine-tuning.

2.2 Multi-step Arithmetic Tasks (MSAT)

The core of our method is the synthetic task MSAT where LMs can learn multi-step reasoning
skills. MSAT can be formulated as a Seq2Seq task: the input of a MSAT example describes an
arithmetic question, while the output is a reasoning chain leading to the answer. Specifically, each
input sequence is composed of three components: question context, equation, and question variable.
Equation is a sequence of symbols and operators (+, —, X, -+, =) that builds equality relationship
between symbols. Given an equation, only one of the symbols is set as the question variable, while
other symbols will be listed in question context with their numerical values.

The output sequence of MSAT is constructed in a code-style multi-step reasoning format. Each step
consists of two sub-steps: variable assignment and calculation. In variable assignment, numbers
appear in the input sequence are assigned to the variable names that are exclusive for decoder. In
calculation, a new variable is generated from the calculation of the existing variables. This makes
our outputs become executable Python code so that the numerical answer can be calculated by an
external Python interpreter. Both inputs and outputs of MSAT are generated purely automatically.
Details about the construction of MSAT are provided in Appendix A.1.

2.3 Pre-training via adapter-tuning

Directly training on synthetic data that are largely different from the natural language corpus harms
LMs’ language prowess [4]. Therefore, we adopt a two-stage tuning strategy [20] to inject reasoning
skills into LMs. Specifically, we perform adapter-tuning [6] on MSAT and then jointly fine-tune
adapter and LM backbone on downstream tasks. It mitigates catastrophic forgetting because LM’s
original parameters are largely preserved during adapter-tuning [6]. Fig. 2 shows an overview of



Table 1: Accuracy (%) comparison between large language models (LLMs), backbone model
baselines, and our method. A: performance gap compared with the symbolic mask baselines.

MAWPS ASDiv-A SVAMP
Model
Acc. A Acc. A Acc. A
Large language models [21] (PaLM 540B) (code-davici-002)  (PaLM 540B)
w/ Chain-of-Thought prompting 93.3 80.4 79.0
Seq2Seq models
ROBERTAGEN [9]
w/ symbolic masks 88.4 72.1 30.3
w/ digit tokenization 841 (-43) 719 (-02) 276 (-2.7)
MsSAT-ROBERTAGEN (OURS) 91.6 (+32) 818 (+9.7) 39.8 (+9.5)
DAG structured models
DEDUCTREASONER [7]
w/ symbolic masks 92.0 85.0 45.0
w/ digit tokenization 91.6 (-04) 841 (-09) 444 (-0.6)

MSAT-DEDUCTREASONER (OURS) 943 (+2.3) 87.5 (+2.5) 489 (+3.9)

the proposed pre-training method. We adopt models with encoder-decoder architecture to verify the
effectiveness of our method. More details about the backbone models are provided in Section 3.1.

3 Experiments

3.1 Experimental setup

Existing datasets We consider three commonly-used MWP datasets: MAWPS [8], ASDiv-A [13],
and SVAMP [15]. We report five-fold cross-validation results for both MAWPS and ASDiv-A and
test set accuracy for SVAMP following previous practice [9, 7]. We provide more details about these
datasets in Appendix A.2.

Models We consider both sequence-to-sequence (Seq2Seq) models and directed acyclic graph
(DAG) structured models as our backbone models. For Seq2Seq model, we choose ROBERTA-
GEN [9], an encoder-decoder model with RoBERTa as the encoder combined with a Transformer
decoder. For DAG structured model, we choose DEDUCTREASONER [7] that combines RoOBERTa
with a DAG decoder. In their original implementation, both models replace numbers with symbolic
mask tokens. Hence, we additionally consider a baseline for each backbone model that uses actual
numbers with digit tokenization. We name the models that are based on these two backbone mod-
els and pre-trained with our method as MSAT-ROBERTAGEN and MSAT-DEDUCTREASONER
respectively. We also compare our models to large LMs, e.g., PaLM [2] and Codex [1], with chain-of-
thought prompting [21]. All models are evaluated via greedy decoding. More implementation details,
e.g., training hyperparameters, are provided in Appendix C.

3.2 Main results

Table | compares our models with backbone model baselines and large LMs. On all datasets, digit
tokenization baselines consistently perform worse than their symbolic mask counterparts, indicating
the deficiency of the numeracy comprehension of the original ROBERTa model. However, the models
trained with MSAT surpass both baselines by a large margin, which demonstrates the effectiveness of
our pre-training method.

Compare with large language models We also observe that, on relatively simple tasks, i.e.,
MAWPS and ASDiv-A, RoBERTa-based models can outperform large LMs. But for the more
challenging task SVAMP, there is still a large performance gap. We believe this is because SVAMP
requires models to have a better understanding of natural languages. Jie et al. [7] also reports that
varying LM encoders results in significant performance disparities on SVAMP, indicating that SVAMP
performance is closely tied to model’s natural language capabilities.



100 MsAT SVAMP
.- MSAT acc. "‘. ....... ® "
—e— SVAMP acc. S 100 96.5 404 32.8
>, 80 & o)
1) . © —_ 4
g 60 -/) “3 & 801 ®
] ¢7 S > 63.3 301 28.6
® 4 . 2 g 8 7 25
£ 401 O e S w0 5
< - = O 404 204
) = < %)
s 2 e > <
20 1S 4 [0 15
I o 36 209 g1 10.1
o] enertt . — 10
2 4 6 8 10 12 [ Answeronly [ Math expression [ Code-style expression

Pre-training steps (thousand)

Figure 4: Comparison between different output expression
formats. Results are obtained from our Seq2Seq model
(with code-style expressions) and its variants.

Figure 3: Performance on MSAT and SVAMP
with respect to the pre-training steps. Results are
obtained from 3 different runs.

4 Pre-training analysis

In this section, we provide a careful analysis of our pre-training method from various perspectives
to understand why it works. Additional analysis on the difficulty of MSAT and adapter-tuning is
provided in Appendix B.

Pre-training task performance We visualize how the performance of pre-training task MSAT and
one of the MWP tasks SVAMP changes with pre-training steps in Figure 3. It can be observed that the
performance on both synthetic and natural language tasks tends to improve gradually as the number
of pre-training steps increases. Figure 3 demonstrates that LMs are capable of learning multi-step
reasoning gradually from the synthetic task MSAT. The acquired multi-step reasoning ability can
subsequently be transferred to the downstream MWP solving tasks, enhancing performance during
the fine-tuning phase.

Effect of producing intermediate steps While it is a common practice to train LMs towards
directly producing the numerical answers of the arithmetic questions [4, 16], a recent work shows that
LMs’ arithmetic skills are not reliable [17]. To explore whether LMs can learn reasoning skills from
MSAT without intermediate steps, we pre-train LMs on a variant of MSAT by replacing step-by-step
output sequences with only numerical answers. Fig. 4 compares this model (answer only) with our
model (code-style). Its poor performance on both MSAT and SVAMP confirms the necessity of
producing intermediate reasoning steps during pre-training.

Structured code-style expression We next investigate the importance of applying the structured
code-style reasoning expressions by comparing it with the less formatted math expressions. We
argue that, compared with math expressions that only contain numbers and operators, our code-style
expressions are more suitable for multi-step reasoning due to the structure information in the output
sequences. Our experiments in Fig. 4 demonstrate the superiority of the code-style output expressions.
We can see that models with math expressions perform consistently worse than models with code-style
multi-step reasoning format on both pre-training task MSAT and MWP solving task SVAMP.

5 Conclusion

We propose a novel synthetic pre-training task, MSAT, to incorporate LMs with multi-step reasoning
skills that improve performance on MWP tasks. This pre-training task encourages LMs to generate
intermediate reasoning steps instead of predicting final numerical answers directly. Our experiments
show that the proposed method is effective in improving the moderate-sized LM’s performance on
MWP solving tasks.
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A Additional information about datasets

In this section, we provide additional details about the datasets that we used in the experiments. The
dataset statistics is provided in Table 2.

A.1 Construction of MSAT

The proposed MSAT is a synthetic Seq2Seq task where the inputs describe arithmetic questions
and outputs are the solutions represented by a code-style multi-step reasoning format. Both inputs
and outputs of MSAT can be generated automatically. To construct an example of MSAT, we first
generate the input sequence and then produce the output solution accordingly. In all, we generate
85,000 examples and split them into 80,000 and 5,000 for training and evaluation respectively.

Input sequence construction We start by preparing a set of equation templates and each equation
template contains no more than 3 binary operators (4, —, X, and +). By enumerating the possible
combinations of operators, we obtain 4 + 42 4 4% = 84 equation templates in total. The first step to
construct an input arithmetic question is to instantiate an equation from an equation template. For
example, given an equation template "<Num0> + <Numl> = <Num2>", we assign each variable a value
that makes the equality hold and a variable name selected from the capitalized letters. The numbers
in the questions are sampled from 0 to 10,000. The last step is to randomly pick a variable as the
question variable. Therefore, the resulting input arithmetic question may look like: "A=1. C=3.
A+B=C. B?"

Output sequence construction Given an
equation and a question variable, the output is
first constructed as a math expression leading to
the value of the question variable. Notice that
an equation can be represented as a binary tree
where the variables are the .termmal nodes and Figure 5: An illustration of the "tree inversion" algo-
operators are the non-terminal nodes. Hence, rithm that produces an output expression from an arith-
the output can be produced by a "tree inversion”  metic question. The question variable is highlighted.
algorithm (see Figure 5) from an equation and

a question variable.

A.2 Existing datasets

MAWPS [8] Itis a popular benchmark dataset Table 2: Existing dataset statistics.
for math word problems. We use the five-fold
split provided by Lan et al. [9] for evaluation.

Dataset  #Data V& input  Avg. output

length reasoning steps
ASDiv-A [13] This is an English math word MAWPS 1,987 30.3 1.4
problem task containing various linguistic pat- ASDiv-A 1,217 323 1.2
SVAMP 1,000 34.7 1.2

terns and problem categories. We obtain the data
and five-fold split from Patel et al. [15].

SVAMP [15] TItis a challenge set created for MWP model robustness evaluation. The examples in
SVAMP are from ASDiv-A with deliberately designed variations. Such variations include: changing
questions, adding irrelevant information, etc. Following the evaluation protocol suggested by Patel
et al. [15], we train our models over 3,138 training examples from a combination of MAWPS and
ASDiv-A.

B Ablation studies

Difficulty level of MSAT Leveraging synthetic data for pre-training provides the advantage of
enabling highly customizable difficulty levels for the training data. Here we define the difficulty level
of areasoning task as the averaged reasoning steps that are required to solve the problems. From Fig. 6,
we see that pre-training LMs on MSATS s that are harder than downstream tasks generally leads to
better results. It’s important to note that, broadly speaking, the difficulty level of a reasoning task,
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Figure 6: Performance on MAWPS and ASDiv-
A with respect to pre-training difficulty. The Figure 7: MSAT and downstream task performance com-

difficulty levels of two MWP tasks are also parison between full fine-tuning and adapter-tuning during
added for reference. pre-training.

particularly those involving natural language, is not solely determined by the number of reasoning
steps. One example is that, though both ASDiv-A and SVAMP have an averaged reasoning steps
of 1.2 (see Table 2), SVAMP is considered more difficult as it requires high-level natural language
understanding [15].

Perform adapter-tuning on MSAT Tuning all parameters of LM encoders on synthetic data that
are largely different from the pre-training corpus may lead to catastrophic forgetting [4]. To explore
the importance of performing adapter-tuning on MSAT, we create a variant of our method in which
we perform full fine-tuning on MSAT. We compare this variant with our models in Fig. 7. It can be
observed that both full fine-tuning and adapter-tuning can achieve good performance on MSAT, but
adapter-tuning outperforms fine-tuning on all downstream MWP datasets, which demonstrates the
benefits of performing adapter-tuning on MSAT.

C Implementation details

Our method is implemented in Python 3.8 with HuggingFace’s Transformers [22] and PyTorch [14]
libraries. All experiments can be conducted on one NVIDIA RTX 6000 GPU with 22 GB memory.
For our MSAT-ROBERTAGEN and MSAT-DEDUCTREASONER, we build the backbone models
following the implementation provided by Lan et al. [9] and Jie et al. [7] respectively. The encoders for
both models are initialized with the pre-trained weights of ROBERTay, ;. The adapter modules [6]
are added to each layer of the encoders with a bottleneck dimension of 64. More details about the
mdoel architectures are provided in Table 3. We provide the hyperparameters for both pre-training
and fine-tuning in Table 4.

Table 3: Architectures hyperparameters. Table 4: Training hyperparameters.
ROBERTAGEN DEDUCTREASONER PRE-TRAINING  FINE-TUNING

# Params. 139.71 M 142.40 M Batch size 32 16

# Attention heads 8 -

Hidden dim. 768 768 Max steps 10,000 50,000

F . Optimizer AdamW [12]
eedforward dim. 1024 768 .

# Layers P _ Weight decay 0.01 0.01

Activation ReLU ReLU Max grad norm 0.1 1.0

Dropout 0.1 0.1 Learning rate 3e-5 le-5

Label smoothing 0.05 - LR scheduler Linear Linear

# Constants 17 17




	Introduction
	Method
	Digit tokenization for numbers
	Multi-step Arithmetic Tasks (MsAT)
	Pre-training via adapter-tuning

	Experiments
	Experimental setup
	Main results

	Pre-training analysis
	Conclusion
	Additional information about datasets
	Construction of MsAT
	Existing datasets

	Ablation studies
	Implementation details

