
Can We Count on Deep Learning: Characterizing
Combinatorial Structures With Interpretability

Helen Jenne1, Herman Chau2, Davis Brown1, Jackson Warley1, Tim Doster1, Henry Kvinge1,2
1Pacific Northwest National Laboratory

2Department of Mathematics, University of Washington
{first.last}@pnnl.gov, hchau@uw.edu

Abstract

With its exceptional pattern matching ability, deep learning has proven to be a
powerful tool in a range of scientific domains. This is increasingly true in re-
search mathematics, where recent work has demonstrated deep learning’s ability
to highlight subtle connections between mathematical objects that might escape a
human expert. In this work we describe a simple method to help domain experts
characterize a set of mathematical objects using deep learning. Such characteri-
zation problems often occur when some particular class of function, space, linear
representation, etc. naturally emerges in calculations or other means but lacks a
simple description. The goal is to find simple rules that also ideally shed light
on the underlying mathematics. Our method, which we call Feature Attribution
Clustering for Exploration (FACE), clusters the feature attribution representations
extracted from a trained model, arriving at a short list of prototype attributions that
the domain expert can then try to convert into formal and rigorous rules. As a case
study, we use our method to derive a new result in combinatorics by characterizing
a subset of 0-1 matrices that corresponds to certain representations of permutations
known as two-sided ordered words.

1 Introduction

The search for patterns in large (even infinite) sets of objects is a common task in mathematics. This
is especially true in the field of combinatorics, an area of mathematics that counts, characterizes, and
studies the properties of discrete structures. Since modern machine learning (ML) excels at extracting
subtle, discriminative features from data, a natural question is whether ML can be leveraged to
assist research mathematicians in these and other tasks. Preliminary evidence suggests an affirmative
answer [11], but the most effective ways to integrate ML into a researcher’s workflow remains a
nascent area of research.

In this paper we describe a method of using a trained deep learning model as a tool to discover
concise conditions that characterize a set of mathematical objects A, a problem type that we call a
characterization problem. More specifically, we seek a method to help answer questions of the form:

Characterization problem: Given a subset of elements A in set B, find a simple
method to determine whether an arbitrary element b ∈ B belongs to A or not.

These problems are ubiquitous throughout mathematics. Classical examples include:

• A matrix is nonsingular if and only if it has nonzero determinant.
• A subset of Rn is compact if and only if it is closed and bounded.
• A graph is planar if and only if it does not contain K5 or K3,3 as a minor.

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Workshop on MATH-AI.

• Primitive Pythagorean triples (x, y, z) are always of the form x = r2 − s2, y = 2rs, and
z = r2 + s2 for positive coprime integers r and s.

The need for parsimony and human-intelligibility mean that high-level reasoning is especially useful
for characterization problems. As such, they are non-trivial for ML which is good at detailed pattern
recognition but generally poor at large-scale, comprehensive, or principled representations. To
mitigate these limitations, in this paper we present a method to help with characterization problems
that we call feature attribution clustering for exploration (FACE). FACE uses a simple procedure
where a model is trained in a supervised manner to identify positive examples of the set A out of a
population of negative examples. Then explainability tools are employed to extract the features the
model attends to when producing predictions, and finally these features are clustered and prototypes
of each cluster are formed. When the approach is successful, the prototypes will point toward rules
that define A. To illustrate this method, we describe how FACE was used to resolve a combinatorics
question involving the form that a certain type of permutation representation, a two-sided ordered
word, takes when it is realized as a weaving diagram array.

2 Background

2.1 Related Work

The use of computers to assist in mathematical data generation, guide conjecture formation, and
verify proofs has a long and venerable history [1, 22]. Only recently though have deep learning
and other modern ML frameworks been exploited for the purpose of advancing research-level
mathematics. Examples span many of the major mathematical subfields, including representation
theory [11, 6, 20, 8], knot invariants [11, 10], combinatorics and graph theory [25], differential and
algebraic geometry [5, 4, 9], mathematical physics [2, 3], quantum algebra [19], and number theory
[16].

Besides making progress in mathematics, many of these works are also notable in their development
of methodologies by which deep learning can be used to advance mathematics. For example, both
[11] and [9] attempt to identify connections between two sets of mathematical objects (knot invariants
in the former and the quantum period and dimension of Fano varieties in the latter). On the other
hand [25] uses a reinforcement learning framework to look for counterexamples to conjectures in
combinatorics. The present work is unique, to our knowledge, in that the problem type that we look
into is characterization.

2.2 Algebraic combinatorics

Algebraic combinatorics is the study of combinatorial objects such as permutations, partially ordered
sets, and symmetric functions, using algebraic methods such as group theory and linear algebra.
Tools and results from algebraic combinatorics underlie vast swathes of mathematics, such as
algebraic geometry, commutative algebra, and statistical mechanics. Compared to other areas of pure
mathematics, algebraic combinatorics is also more amendable to computational methods and the
generation of data, making it a good choice for study with machine learning.

The central character of our work is the symmetric group, which is the group of permutations of n
distinct elements. The symmetric group is ubiquitous throughout math and computer science with
applications in cryptography, parallel and distributed computing, and geometric complexity theory, to
name a few. It even makes an appearance in deep learning via the type of equivariance needed by
graph neural networks and the symmetries intrinsic to deep learning models [13].

3 Feature Attribution Clustering for Exploration

In this section we describe our approach, feature attribution clustering for exploration (FACE), which
is designed to help a research mathematician arrive at a succinct characterization of a subset A of
mathematical objects out of all B, where A ⊂ B. The method uses a performant deep learning
model trained to classify whether x ∈ B belongs to A or B \ A. The challenge of using standard
explainability techniques in these settings is that most explainability methods produce explanations
for each example in B and when B is large, the domain expert faces the task of consolidating many

2

explanations into a few (hopefully simple) rules. FACE addresses this by clustering explanations with
the goal of identifying a short list of prototype patterns.

Suppose that fθ0 is a randomly initialized model from a chosen deep learning architecture. The user
should choose some integer k ≤ 10 (the number of feature attribution prototypes) as well as a metric
with which to compare feature attribution representations (e.g., comparing saliency maps with respect
to Euclidean distance). FACE proceeds as follows.

1. Dataset creation: Make a dataset D out of B by labeling elements of B by 0 if they are in B \A
and 1 if they are in A. Split D into training and testing sets Dtrain, Dtest.

2. Model training: Train fθ0 on Dtrain to obtain a model fθ (with trained weights θ) that achieves
reasonable accuracy on Dtest.

3. Calculate feature attribution representations: For each x ∈ Dtest, use a feature attribution
method to generate representations of feature importance with respect to predictions by fθ. Call
this set U . Note that |U | = |D|.

4. Find prototype feature attributions through clustering: Cluster elements of U into k different
clusters {Ui}i≤k and calculate centroids (or some other type of consolidated representation)
u1, . . . , uk for each cluster.

5. Mathematician analysis of prototypes: Analyze u1, . . . , uk with the goal of distilling the pre-
diction patterns of fθ into simple rules to characterize elements of A.

Though it is relatively simple, this approach has the virtue of reducing the burden of analyzing large
numbers of feature attribution representations. Indeed, in the example we describe below, clustered
feature attribution maps summarized model prediction patterns well enough for a mathematician to
extract general conditions describing A. Finally, we note that we have sometimes found it useful
to do a second round of clustering on a single cluster to further analyze the patterns captured by a
prototype, but we leave this step out of the general algorithm.

4 Case Study: Two-Sided Ordered Words

To test the effectiveness of FACE, we applied it to an algebraic combinatorics question from one of
our mathematician collaborators. Because of space constraints, we provide a more comprehensive
(though still very brief) explanation of the combinatorial cast of characters in Section 6.1 of the
Appendix. Here we provide surface level scene-setting, ignoring all of the mathematical motivation
(and beauty) in favor of focusing on the ways FACE was used and the extent to which it was effective.

1

2

3

4

4

3

2

1 4 1 1 1
3 1 1 0
2 1 0 0
1 0 0 0

Figure 1: A wiring diagram and weaving pattern.

For n ≥ 1, the weaving patterns of size n
are a family of n × (n − 1) {0, 1}-matrices
that correspond to representations of the per-
mutation that reverses the order of 1, 2, . . . , n
(i.e., i gets sent to n − i + 1). Informally,
such a permutation σ0 can be realized by a
diagram with n nodes on the left and n nodes
on the right, where the ith node on the left is
connected with the (n− i+ 1)th node on the
right by a curve. To form the ith row of the weaving pattern associated to a diagram D, one simply
follows the curve from the ith node from left to right, adding a 0 every time the curve crosses another
moving up and adding a 1 every time the curve crosses another moving down (see Figure 1). Weaving
patterns were discovered independently by [12] and [7].

Two-sided ordered (TSO) words are representations of σ0 that are defined by decomposing σ0 into
a product of adjacent transpositions (that is, the permutations that exchange i and j but leave all
other elements of {1, 2, . . . , n} fixed). We provide more details in Section 6.1. The reader that is
not interested in the mathematical background can think of them as a special subset of diagrams
representing σ0.

The question that we explored was: Find a set of rules or an algorithm that defines the weaving
patterns that correspond to two-sided ordered words.

3

4.1 Characterizing TSO Weaving Patterns

To apply FACE, we set up a dataset consisting of all TSO words from the permutations of 10 elements
converted into weaving patterns. This amounted to 48, 896 {0, 1}-arrays of size 10 × 9. We also
computed 48, 896 weaving patterns that did not correspond to TSO words. We split these into
training and test sets and trained a convolutional neural network consisting of two convolutional
layers followed by one linear layer to classify TSO words. Our model achieved an accuracy of 99.0%
on the test set (Section 6.2 in the Appendix contains further details on data generation and model
training). We then applied Shapley [21, 18] to 16,000 weaving patterns from the test set. Shapley
values require a notion of ‘missingness,’ where the feature attribution is calculated by considering
the increased output caused by (groups of) features over their missing feature baseline. For machine
learning models, a missing feature is often not well-defined [15], here we use both the zero matrix
and all-ones matrix as baselines. Following the FACE procedure we applied k-means clustering to
the Shapley outputs. We experimented with several different values of k, finding that many of the
same patterns appeared regardless of k. We highlight key insights that led us to a general algorithm
below in the case n = 9 (so that both the weaving patterns and Shapley output were 10× 9 binary
matrices).

Figure 2: (First column) Three centroids of clustered Shapley outputs (with a zero matrix baseline).
(Second column) Centroids from our second clustering of elements of cluster 2, computed with
respect to the all-ones matrix as a baseline. (Third and fourth column) Three examples of non-TSO
weaving patterns from cluster 2 are shown with superimposed Shapley outputs using a zero matrix
baseline (left) and an all-ones matrix baseline (right).

Using FACE prototypes to identify a first necessary condition: In three of the FACE clusters the
model strongly attended to a 1 in row 2. These clusters appeared for multiple choices of k and
are visualized in Figure 2 (left column). This suggested that a 1 in this row related to a property
characterizing those weaving patterns not corresponding to TSO words (though the simple presence
of a 1 in that row was not enough as 3.6% of the TSO weaving patterns had a 1 in row 2, column 5).

4

To gain further insight we focused on cluster 2 (which was quite large) and applied k-means again to
just these elements, this time using Shapley values relative to the all-1’s matrix baseline (to focus
on the effect of 0’s). In three (out of eight) of the centroids from this second round of clustering,
the model attended to the 0 in row 9 of the weaving pattern (top three examples in column two of
Figure 2). Together these two observations eventually led to the following proposition.
Proposition 1. Let D be a {0, 1}-array of size (n+ 1)× n. Then if D has a 1 in one of the middle
three positions of row 2 and a 0 in one of the three middle three positions of row n, it cannot
correspond to a TSO word.

Identifying other cases: Unfortunately, this criteria does not cover all cases. For example, row 9
often contains 8 consecutive 1’s, so the first criterion we developed does not apply. Looking for
patterns that may include these other cases, we noticed that in cluster 4 the model highly attended to
0’s that were placed far apart in row 8 (see the examples highlighted in green in Figure 2). This led to
the following proposition.
Proposition 2. Let D be an (n + 1) × n weaving pattern which corresponds to a TSO weaving
pattern and suppose it has a 1 in one of the middle three positions in row 2, the 0’s in row n− 1 can
have at most one 1 in between them.

Having identified these two conditions, we looked for examples that fell outside of these cases. In
these examples, we noticed that the model appeared to attend more to cells in the rows less than 9
and greater than 2. That is, when the model was not able to find features in the outer rows (row 2 and
row 9) that differentiated between TSO and non-TSO words, it moved inward (looking at rows 3 and
8 for instance). This suggested the general outline for the algorithm that we eventually developed
(see Section 7.1 in the Appendix for the details) that also proceeds iteratively, comparing pairs of
rows 2 and n− 1, then 3 and n− 2, then 4 and n− 3, etc. until a condition is found that can be used
to determine whether a weaving pattern corresponds to a TSO word or not. While in most cases we
are aware of, machine learning approaches to questions in mathematics have largely succeeded by
identifying specific correlations between features, counterexamples, etc., we were surprised that in
this instance FACE also suggested the structure in the desired algorithm.

5 Conclusion

There are now multiple examples that suggest that deep learning can be an effective tool to accelerate
progress in research level mathematics. However, effective methodologies for applying deep learning
to the specific types of problems that mathematicians work on are still needed. In this work we pre-
sented FACE, a method that can be used to help a mathematician find a solution to a characterization
problem. As proof of the method’s utility, we described how FACE was able to help a mathematician
solve a combinatorics problem involving representations of a certain family of permutations.

Acknowledgments and Disclosure of Funding

This research was supported by the Mathematics for Artificial Reasoning in Science (MARS)
initiative at Pacific Northwest National Laboratory. It was conducted under the Laboratory Directed
Research and Development (LDRD) Program at at Pacific Northwest National Laboratory (PNNL), a
multiprogram National Laboratory operated by Battelle Memorial Institute for the U.S. Department
of Energy under Contract DE-AC05-76RL01830.

References
[1] David Bailey, Jonathan Borwein, Neil Calkin, Russell Luke, Roland Girgensohn, and Victor

Moll. Experimental mathematics in action. CRC press, 2007.

[2] Jiakang Bao, Yang-Hui He, Elli Heyes, and Edward Hirst. Machine learning algebraic geometry
for physics. arXiv preprint arXiv:2204.10334, 2022.

[3] Jiakang Bao, Yang-Hui He, Edward Hirst, Johannes Hofscheier, Alexander Kasprzyk, and
Suvajit Majumder. Hilbert series, machine learning, and applications to physics. Physics Letters
B, 827:136966, 2022.

5

[4] Per Berglund, Ben Campbell, and Vishnu Jejjala. Machine learning kreuzer–skarke calabi–yau
threefolds. arXiv preprint arXiv:2112.09117, 2021.

[5] David S Berman, Yang-Hui He, and Edward Hirst. Machine learning calabi-yau hypersurfaces.
Physical Review D, 105(6):066002, 2022.

[6] Charles Blundell, Lars Buesing, Alex Davies, Petar Veličković, and Geordie Williamson.
Towards combinatorial invariance for kazhdan-lusztig polynomials. Representation Theory of
the American Mathematical Society, 26(37):1145–1191, 2022.

[7] Herman Chau. Commutation classes of permutations. Seminar talk at University of Puget
Sound, 2023.

[8] Man-Wai Cheung, Pierre-Philippe Dechant, Yang-Hui He, Elli Heyes, Edward Hirst, and
Jian-Rong Li. Clustering cluster algebras with clusters. arXiv preprint arXiv:2212.09771, 2022.

[9] Tom Coates, Alexander M Kasprzyk, and Sara Veneziale. Machine learning the dimension of a
fano variety. Nature Communications, 14(1):5526, 2023.

[10] Jessica Craven, Mark Hughes, Vishnu Jejjala, and Arjun Kar. Illuminating new and known
relations between knot invariants. arXiv preprint arXiv:2211.01404, 2022.

[11] Alex Davies, Petar Veličković, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad Tomašev,
Richard Tanburn, Peter Battaglia, Charles Blundell, András Juhász, et al. Advancing mathemat-
ics by guiding human intuition with ai. Nature, 600(7887):70–74, 2021.

[12] Stefan Felsner. On the number of arrangements of pseudolines. Discrete Computational
Geometry, 18:257–267, 1997.

[13] Charles Godfrey, Davis Brown, Tegan Emerson, and Henry Kvinge. On the symmetries of deep
learning models and their internal representations. Advances in Neural Information Processing
Systems, 35:11893–11905, 2022.

[14] Gonçalo Gutierres, Ricardo Mamede, and José Luis Santos. Commutation classes of the reduced
words for the longest element of Sn. Electron. J. Combin., 27(2):Paper No. 2.21, 25, 2020.

[15] Saachi Jain, Hadi Salman, Eric Wong, Pengchuan Zhang, Vibhav Vineet, Sai Vemprala, and
Aleksander Madry. Missingness bias in model debugging. arXiv preprint arXiv:2204.08945,
2022.

[16] Matija Kazalicki and Domagoj Vlah. Ranks of elliptic curves and deep neural networks.
Research in Number Theory, 9(3):53, 2023.

[17] Donald E Knuth. Axioms and hulls. Springer, 1992.

[18] Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Edward Wang, Bilal Alsallakh, Jonathan
Reynolds, Alexander Melnikov, Natalia Kliushkina, Carlos Araya, Siqi Yan, and Orion Reblitz-
Richardson. Captum: A unified and generic model interpretability library for pytorch, 2020.

[19] Shailesh Lal, Suvajit Majumder, and Evgeny Sobko. The r-matrix net. arXiv preprint
arXiv:2304.07247, 2023.

[20] Kyu-Hwan Lee. Machine-learning kronecker coefficients. arXiv preprint arXiv:2306.04734,
2023.

[21] Lloyd S Shapley et al. A value for n-person games. 1953.

[22] Carlos Simpson. Computer theorem proving in mathematics. Letters in Mathematical Physics,
69:287–315, 2004.

[23] Richard P Stanley. On the number of reduced decompositions of elements of coxeter groups.
European Journal of Combinatorics, 5(4):359–372, 1984.

[24] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 10.1), 2023.
https://www.sagemath.org.

[25] Adam Zsolt Wagner. Constructions in combinatorics via neural networks. arXiv preprint
arXiv:2104.14516, 2021.

6

6 Supplementary Material

6.1 The Cast of Combinatorial Characters

Weaving patterns come from the combinatorial study of the symmetric group Sn, the group of
permutations on {1, 2, . . . , n}. We will write permutations π ∈ Sn in one-line notation; for example,
the permutation π that maps 1 7→ 4, 2 7→ 3, 3 7→ 2, 4 7→ 1 is written 4321. Of particular importance
are the longest permutation π0 = n(n − 1)(n − 2) · · · 1 and the adjacent transpositions si, which
swap i and i+ 1 while holding all other numbers fixed.

It is well known that any permutation can be written as a product of adjacent transpositions. For
example, the permutation π0 = 4321 can be written s1s2s3s1s2s1, as visualized using the wiring
diagram in Figure 1. We will abbreviate this product as 123121 and call it a reduced word. Reduced
words for π0 are equivalent to primitive sorting networks and of interest to both combinatorialists and
computer scientists [17]. The word ‘reduced’ indicates that there is no way to write this permutation
as a product of fewer transpositions.

In general, the permutation π0 has many different reduced words. The combinatorics of reduced
words for π0 is well-studied [23]. On the other hand, one can define a equivalence relation on reduced
words and partition them into classes called commutation classes that are less well understood. We
are particularly interested in a subset of 0-1 matrices, weaving patterns, that are in bijection with
commutation classes of π0.

Definition 1. The weaving pattern of a reduced word of π0 is an n× (n− 1) matrix whose ith row
is a binary sequence obtained by following the wire labeled i from left to right in the wiring diagram
and recording a 0 for every crossing in which it goes up and a 1 for every crossing in which it goes
down.

In this case study we characterize weaving patterns of a family of reduced words recently introduced
by Gutierres et al. [14] called two-sided ordered (TSO) words. These words are a generalization of
another family they introduced, that of ordered words. In order to develop intuition and to aid in the
proofs of our TSO characterization we first discuss the family of ordered words.

6.1.1 Ordered weaving patterns

Gutierres et al. [14] study two families of reduced words. The first family that they study are called
ordered words. An example of an ordered word for π0 ∈ S5 is: w = 4321 · 234 · 32 · 3. In general an
ordered word is defined by a binary vector of length n− 1 as follows:

Definition 2 ([14]). Given a vector b = (b1, b2, . . . , bn−1) with bi ∈ {↑, ↓} for all i, construct the
word wb as a concatenation of monotone subwords wn−`+1, wb = wn−1wn−2 . . . w1, which are
defined recursively as follows. Let w↑n = 12 · · ·n and w↓n = n · · · 21. Then for ` = 1, . . . , n − 1,
w

b`+1

n−` is obtained fromwb`

n−`+1 by removing the last letter. If b`+1 =↑,wb`+1

n−` is increasing, otherwise
w

b`+1

n−` is decreasing.

An example of an ordered word for π0 ∈ S5 is: w = 4321 · 234 · 32 · 3.

Gutierres et al. show that any ordered word is a reduced word for π0 [14, Prop. 19], and that the set
of ordered words O(n) contains 2n−1 distinct words which each belong to a different commutation
class [14, Prop. 20].

We found that a binary matrix is a weaving pattern for a commutation classes containing an ordered
word if and only if it has a decomposition into a sequence of decreasing nested "L"s (see Figure 3).
This characterization did not require any ML techniques but resulted in a key observation that was
important for our work on the TSO characterization: in ordered words, the subwordwn−` corresponds
to a row containing a sequence of n− ` consecutive 1’s or 0’s, depending on whether it is increasing
or decreasing.

In order to characterize the weaving patterns associated with ordered words (which we call ordered
weaving patterns), we introduce one more definition. We label the cells of the weaving diagram so
that the cell in the jth column of the row labeled i is cell (i, j).

Definition 3. In a weaving pattern, an L centered at (i, j) of length 2k is either

7

1

2

3

4

5

5

4

3

2

1 5 1 1 1 1

4 0 1 1 1

3 0 1 0 1

2 0 1 0 0

1 0 0 0 0

Figure 3: A wiring diagram for the reduced word 4321 · 234 · 32 · 3 (left) and the associated weaving
pattern (right).

(1) a sequence of consecutive 1’s in the cells (i, j), (i, j + 1), . . . , (i, j + k) and a sequence of
consecutive 0’s in the cells (i− 1, j), (i− 2, j), . . . , (i− k, j), or

(2) a sequence of consecutive 0’s in the cells (i, j), (i, j + 1), . . . , (i, j + k) and a sequence of
consecutive 1’s in the cells (i+ 1, j), (i− 2, j), . . . , (i+ k, j).

In the first case, we call the L upward-facing, and in the second case we call the L downward-facing

In the examples in Figure 3, the weaving patterns can be decomposed into Ls of decreasing length,
each corresponding to a subword. The L is upward facing when the corresponding subword is
increasing, and downward facing when the corresponding subword is decreasing. This is the case in
general, and follows from the wiring diagram representation.
Definition 4. If a weaving pattern for a reduced word in Sn+1 can be decomposed into adjacent Ls
that decrease in length from left to right so that the lengths of the Ls in order are 2n, 2(n− 2), . . . , 2,
we say that the weaving pattern has a decreasing nested L-decomposition.
Proposition 5. A binary matrix is an ordered weaving pattern if and only if it has a decreasing nested
L-decomposition.

Proof. To see that each ordered weaving pattern has a decreasing nested L-decomposition, it suffices
to observe that:

(1) An ordered word can be decomposed into subwords of lengths n, n− 1, . . ., 1 (reading left
to right)

(2) A decreasing subword of length k gives rise to an L of length 2k in the weaving pattern

Although we have not proven the second claim rigorously, it can be proven by induction.

For the reverse direction, we count the number of weaving patterns with decreasing nested L-
decompositions. Observe that there are 2n−1 decreasing nested L decompositions for a word that
uses the letters 1, . . . , n, since we can choose whether the Ls are upward or downward facing for the
first n− 1 Ls (the last L is determined once the first n− 1 are chosen). Two ordered words cannot
have the same weaving pattern since Gutierres et al. established that there is at most one ordered
word in each conjugacy class. So the facts that there are 2n−1 ordered words ([14, Proposition 20])
and the map from ordered weaving patterns to nested L decompositions is an injection establish the
claim.

Proposition 5 is an example of the type of characterization described in Section 1. We conclude
our discussion of ordered words with an explicit construction of the weaving pattern for a particular
ordered word.
Proposition 6. To construct the weaving pattern for the ordered word wb1n w

b2
n−1 · · ·w

b`+1

n−` , for ` ≥ 0,
let k = |{bi : bi = b`+1 and i < `+ 1}|. Then

• If b`+1 = −, the cells {(n+ 1− k, j) : `+ 1 ≤ j ≤ n} are 1’s and the cells
{(n+ 1− k − i, `+ 1) : 1 ≤ i ≤ n− `} are 0’s.

• If b`+1 = +, the cells {(1 + k, j) : `+ 1 ≤ j ≤ n} are 0’s and the cells
{(1 + k + i, `+ 1) : 1 ≤ i ≤ n− `} are 1’s.

Example 7. In Figure 3,

8

• b1 = − and indeed when ` = 0, the cells (n+1, j) are 1’s for 1 ≤ j ≤ n and (n+1− i, 1)
are 0’s for 1 ≤ i ≤ n.

• b2 = +; when ` = 1, the cells (1, j) for 2 ≤ j ≤ n are 0’s and the cells (1 + i, 2) for
1 ≤ i ≤ 3 are 1’s

• b3 = −; when ` = 2, the cells (n + 1 − 1, j) for 3 ≤ j ≤ n are 1’s and (n − i, 3) for
1 ≤ i ≤ 2 are 0’s.

• Considering b4 = + (b4 can be either + or −), when ` = 3, the cell (2, 4) is 0 and the cell
(3, 4) is 1.

6.1.2 TSO words

Like an ordered word, a TSO word contains exactly one subword of each length (denoted w1, . . . , wn)
and is defined as follows:

Definition 8. Given an ordered word wb and a partition I ∪ J of {1, 2, . . . , n− 1}, the two-sided
ordered word wb

I is the concatenation
∏
i∈I

w
bn−i+1

i wb1
n

∏
j∈J

w
bn−j+1

j , where the word wbn−i+1

i is the

word obtained from w
bn−i+1

i by adding
∑n
k=i+1 bk to each letter, considering ↑ and ↓ as 1 and

−1, respectively. In the product on the left hand (resp. right hand) side, the factors are written in
increasing (resp. decreasing) orders of their lengths.

Note that instead of requiring the subwords be in decreasing order by length, they can be on either
side of wn, as long as the subwords on the left are in increasing order and the subwords on the right
are in decreasing order.

All TSO words are reduced words for π0, since they are obtained from an ordered word by applying
braid relations. In total there are 3 ·4n−2 TSO words [14, Lemma 23]. For the remainder of this paper,
we will focus on the 3 · 4n−2 − 2n−1 non-alternating TSO words, which each belong to a distinct
commutation class [14, Prop. 46]. We call the weaving patterns for these commutation classes TSO
weaving patterns.

6.2 Experimental details

Dataset generation: We generated all TSO words on n = 9 letters and then generated their weaving
patterns using SageMath’s Pseudolines module [24]. When n = 9 there are 48,896 TSO weaving
patterns, and we generated the same number of non-TSO weaving patterns by permuting the rows of
the TSO weaving patterns, and checking whether the resulting matrix was a weaving pattern that was
not TSO.

Model: We split the data set into 60% training samples, 15% validation samples, and 25% test
samples. The model was trained using Adam for 50 epochs with early stopping if the validation loss
did not improve for five consecutive epochs. Our model achieved an accuracy of 99.0% on the test
set.

k-means clustering details: After applying k-means clustering to Shapley outputs with baseline
the zero matrix we found that the clusters were either clusters of 99.7-100% non-TSO examples or
98-98.5% TSO examples, for k ∈ {2, 3, . . . , 16}. Table 1 in the Appendix shows the sizes of the
clusters; we found that many of the non-TSO clusters were unchanged when k changed. Figure 4
shows the centroids of the clusters of Shapley outputs obtained when k = 8.

7 Proofs of Propositions 1 and 2

Proof of Proposition 1. Since, like ordered words, TSO words contain one subword of each of the
lengths n, n− 1, n− 2, . . . , 1, the statements about sequences of consecutive 1’s and 0’s in the rows
from Proposition 6 still hold. If a weaving pattern is TSO and has a 0 in one of the middle three
positions of row n and a 1 in one of the middle three positions in row 2, it must be the case that wn
and wn−1 correspond to the top and bottom rows. But then since there is not a sequence of n− 2
consecutive 1’s in row n or a sequence of n− 2 consecutive 0’s in row 2, there cannot be a subword
of length n− 2, contradicting the assumption that the weaving pattern is TSO.

9

Figure 4: Cluster centroids after k-means clustering was applied to Shapley outputs using the zero
matrix baseline with k = 8.

Figure 5: The cluster centroids after applying k-means clustering to cluster 1 from Figure 4, this time
using the all 1’s baseline.

Proof of Proposition 2. As in Proposition 6, every decreasing word creates a vertical sequence of 0’s
equal to the length of the word (but unlike in the ordered case, these 0’s do not necessarily have to be
in the same column). Consequently, if a 1 is in one of the middle three positions in row 2, two of
wn, wn−1, and wn−2 must be decreasing, which will result in two 0’s that are separated by at most a
single 1 in row n− 1.

7.1 Algorithm to recover TSO word from the weaving pattern

The input to the algorithm is a binary matrix with rows labeled 1, . . . , n+ 1. At each step we modify
a list of possible subwords and the associated patterns. More precisely, each element in our list is of
the form (subword, [list of (required pattern, rows of required pattern)]), and at each step we either
remove an element of the list or extend the subword and list of required patterns. The algorithm

10

k non-TSO cluster sizes TSO cluster sizes
2 7873 8127
3 602, 7271 8127
4 602, 7271 3585, 4542
5 602, 1215, 6056 3585, 4542
6 602, 624, 2671, 3976 3573, 4554
7 585, 602, 627, 6059 2227, 2862, 3038
8 582, 602, 625, 2423 1676, 2738, 3641, 3713
9 582, 602, 625, 1567, 2423 1578, 2464, 2518, 3641
10 581, 602, 622, 1528, 2406, 2134 1565, 1604, 2449, 2509
11 581, 602, 622, 1528, 2135, 2405 1304, 1461, 1517, 1673, 2172
12 578, 581, 602, 623, 1435, 1986,

2068
853, 1503, 1504, 1838, 2429

13 578, 581, 602, 623, 1435, 1986,
2068

284, 1183, 1233, 1492, 1569, 2366

14 460, 539, 581, 601, 624, 1332,
1816, 1920

310, 1167, 1209, 1493, 1576, 2372

15 525, 581, 602, 622, 974, 1077,
1432, 2060

285, 310, 1018, 1157, 1476, 1522, 2359

Table 1: Table of cluster sizes after applying k-means to Shapley outputs with the zero matrix as a
baseline. Across different choices for k, we consistently observe smaller clusters with similar sizes,
as is shown by coloring these cluster sizes red, blue, and purple.

terminates when this list is empty or we have a word that contains monotone subwords of length
1, 2, . . . , n.

At the beginning of the algorithm, the list is [(w↓n, [(0, rows 1 − n)]), (w↑n, [(1, rows 2 − n + 1)],
where w↓n := n · · · 21 and w↑n := 12 · · ·n, because at the outset it is possible for wn to be increasing
or decreasing. In the first case it is associated to the n consecutive 1’s in row n+1, and in the second
case it is associated to the n consecutive 0’s in row 1.

In general, assume we have a sequence that contains the factors wn, wn−1, . . . and a list of the
required patterns associated to those factors. At step i, for each (subword, [list of (required pattern,
rows of required pattern)]) in the list we need to determine whether it is possible for wn−i to be
increasing and/or decreasing, and whether it can appears to the left and/or the right of the sequence
we’ve established so far.

(1) We start with the highest row that is not already associated to one of the subwords. If this row
has i consecutive 1’s, this is a necessary but not sufficient condition for the subword wn−i to be
decreasing. If this condition is satisfied, go to step (a). Otherwise, go to step (2).

(a) If the required pattern associated to our sequence occurs in the n− i rows below the current
row with a 0 to the right (resp. to the left), then the subword wn−i can be decreasing and can appear
to the left (resp. to the right) of the current sequence.

(2) Next check if wn−i can be increasing. This is analogous to the check for decreasing: we start
with the lowest row that is not already associated to one of the subwords, and check for appearances
of the required pattern with a 1 appended to the right or left.

7.2 Example of TSO algorithm

Example 1. We wish to construct the TSO word corresponding to the weaving pattern:

7 1 1 1 1 1 1
6 0 1 1 1 1 1
5 0 1 1 0 1 1
4 0 1 1 0 0 1
3 0 1 1 0 0 0
2 1 0 0 0 0 0
1 0 0 0 0 0 0

11

We end step i with a list of all possible subwords of length i and the associated required patterns.

Step 1: The list of possible (subwords, required patterns) is (w↓6 , (0, rows 1-6)) and (w↑6 , (1, rows
2-7)).

Step 2 (a): First we consider the possible subwordw↓6 and its required pattern (0, rows 1-6). Assuming
this subword, is w5 increasing or decreasing, and does it appear to the right or to the left of w6? If w5

is decreasing it corresponds to the 5 consecutive 1’s in row 6 (see Figure 6, left). But since row 5
does not have two consecutive 0’s (highlighted in red), this is not possible.

If instead w5 is increasing this corresponds to five of the 0’s in row 1. Because w↓6w
↑
5 would require

the pattern 01 in rows 2-6 and w↑5w
↓
6 would require the pattern 10 in rows 2-6, this is not possible

(see Figure 6, center). So there are not any possible subwords of length 2 where w6 is decreasing.

7 1 1 1 1 1 1

6 0 1 1 1 1 1

5 0 1 1 0 1 1
4 0 1 1 0 0 1
3 0 1 1 0 0 0
2 1 0 0 0 0 0
1 0 0 0 0 0 0

7 1 1 1 1 1 1

6 0 1 1 1 1 1
5 0 1 1 0 1 1
4 0 1 1 0 0 1
3 0 1 1 0 0 0

2 1 0 0 0 0 0

1 1 1 1 1 1 0

7 1 1 1 1 1 1
6 0 1 1 1 1 1
5 0 1 1 0 1 1
4 0 1 1 0 0 1
3 0 1 1 0 0 0

2 1 0 0 0 0 0

1 0 0 0 0 0 0

Figure 6: Illustration of the different cases in Step 2

(b) Next we consider the subword w↑6 and its required pattern (1, rows 2-7)). Since row 2 has five
consecutive 0’s and rows 3-7 have two consecutive 1’s, it is possible for w5 to be increasing. Since
the 1 in row 2 is in the leftmost position, w↑5 must appear to the right of w↑6 (see Figure 6, right). So
at the end of step 2 our list will include (w↑6w

↑
5 , [(1, rows 2-7), (11, rows 3-7)]). If w5 is decreasing,

either the pattern 10 must appear in rows 2-6 or the pattern 01 must appear in rows 2-6. Since we saw
in (a) that neither of these patterns appears in all of these rows, this is not possible. So at the end of
this step, our list of possible (subwords, required patterns) is (w↑6w

↑
5 , [(1, rows 2-7), (11, rows 3-7)]).

Step 3: Starting with the subword w↑6w
↑
5 and the required patterns [(1, rows 2-7), (11, rows 3-7)]),

we see that w4 cannot be increasing because there are not four consecutive 0’s in row 3. If w4 is
decreasing, this will correspond to 4 of the 1’s in row 7, and either the pattern 011 or the pattern 110
is required in rows 3-6. As shown in Figure 7 (left), 011 is a pattern in all of these rows but 110 is not
a pattern in row 6, our list of possible subwords of length 3 and corresponding required patterns is
(w↓4w

↑
6w
↑
5 , [(1, rows 2-7), (11, rows 3-7), (011, rows 3-6)]).

7 1 1 1 1 1 1

6 0 1 1 1 1 1

5 0 1 1 0 1 1

4 0 1 1 0 0 1

3 0 1 1 0 0 0

2 1 0 0 0 0 0

1 0 0 0 0 0 0

7 1 1 1 1 1 1

6 0 1 1 1 1 1

5 0 1 1 0 1 1

4 0 1 1 0 0 1

3 0 1 1 0 0 0

2 1 0 0 0 0 0

1 0 0 0 0 0 0

7 1 1 1 1 1 1

6 0 1 1 1 1 1

5 0 1 1 0 1 1

4 0 1 1 0 0 1

3 0 1 1 0 0 0

2 1 0 0 0 0 0

1 0 0 0 0 0 0

Figure 7: Illustration of the cases in steps 3 and 4.

Step 4: Beginning with the subword w↓4w
↑
6w
↑
5 and the required patterns [(1, rows 2-7), (11, rows 3-7),

(011, rows 3-6)], if w3 is decreasing it corresponds to 3 of the consecutive 1’s in row 6 and we must
grow the pattern 011 to either 0110 or 0011 in rows 3-5. The pattern 0110 exists in all of these rows,
as shown in Figure 7 (center), so the subword (w↓4w

↑
6w
↑
5w
↓
3 , [(1, rows 2-7), (11, rows 3-7), (011, rows

3-6), (0110, rows 3-5)]) is a possible subword. We see that w3 cannot be increasing because although
there are three consecutive 0’s in row 3, neither of the patterns 1011 or 0111 exist in row 4.

Step 5: Beginning with the subword w↓4w
↑
6w
↑
5w
↓
3 and required patterns [(1, rows 2-7), (11, rows

3-7), (011, rows 3-6), (0110, rows 3-5)]), we see that there are two consecutive 1’s in row 5 and two
consecutive 0’s in row 3. But then we see that the only way to extend the pattern 0110 in rows 3 and
4 is to add a 0: 01100, so w2 must be decreasing and appear to the right of the existing subword.
(There is not a way to extend the pattern 0110 that is consistent in rows 4 and 5.) So we conclude this

12

step with the subword (w↓4w
↑
6w
↑
5w
↓
3w
↓
2 , [(1, rows 2-7), (11, rows 3-7), (011, rows 3-6), (0110, rows

3-5), (01100, rows 3-4)]). This also determines w1, which appears to the right of w2, see Figure 7.

Thus the TSO word corresponding to this weaving diagram is

6543 · 123456 · 12345 · 432 · 43 · 4,

where the word 6543 is obtained from 4321 by incrementing each letter by 2, as is required by
Definition 8.

13

	Introduction
	Background
	Related Work
	Algebraic combinatorics

	Feature Attribution Clustering for Exploration
	Case Study: Two-Sided Ordered Words
	Characterizing TSO Weaving Patterns

	Conclusion
	Supplementary Material
	The Cast of Combinatorial Characters
	Ordered weaving patterns
	TSO words

	Experimental details

	Proofs of Propositions 1 and 2
	Algorithm to recover TSO word from the weaving pattern
	Example of TSO algorithm

