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Abstract

We consider a long-standing open problem in mathematics: discovering the Lya-
punov functions that control the global stability of dynamical systems. We propose
a method for generating training data, and train sequence-to-sequence transformers
to predict the Lyapunov functions of polynomial and non-polynomial systems with
high accuracy. We also introduce a new baseline for this problem, and show that
our models achieve state-of-the-art results, and outperform approximation based
techniques and sum-of-square algorithmic routines.

1 Introduction

Recent applications of AI, and especially Transformers [34], to mathematics mostly focus on two
directions. One aims to improve the ability of Large Language Models in reasoning, performing
arithmetic, or solving elementary problems written in natural or formal language [22, 23, 15, 26,
37, 41, 21, 38, 16, 28, 36, 39, 13]. The other one studies the capability of transformers to solve
undergraduate or graduate level problems [33, 20, 6, 7, 8, 5] that play an important role in many
fields of science, but that can already be solved via non-AI means. There were comparatively few
attempts to use AI to solve open research problems in mathematics [35, 10], and most of them do not
use transformers.

We believe that two factors account for the lack of application of transformers to research problems.
First, the formalization of the underlying problem may require specialized work by mathematicians [3].
Second, math transformers are typically trained on large supervised sets of problems and solutions,
generated using an external solver to compute the solutions of random problems. For open problems,
such an approach is unfeasible, and the only way to create supervised training data is to sample
solutions and generate problems associated to them (the “backward method” from [20]). This creates
new difficulties [40]. First, we no longer control the distribution of the problems we train the model to
solve – i.e. we might be solving a specific, and easier, version of the problem we claim to be working
on. Second, the technique for generating problems from solutions must be chosen with care, or the
model might just learn to ‘ìnverse” our naive data generator, instead of solving the actual problem.

In this paper, we focus on a long-standing, yet easy to formalize, open problem in mathematics:
discovering the Lyapunov functions that control the global stability of dynamical systems – whether
their solutions always remain bounded when time goes to infinity. We propose a new technique
for generating training data for supervised learning, and show that transformers trained on this
dataset achieve very high accuracies on held-out test sets. We also show that our models outperform
deep-learning based approximation techniques and classical algorithmic routines that provide partial
solutions to this problem in specific cases. Finally, we introduce an out-of-distribution benchmark
of hard (from a human perspective) but algorithmically solvable cases, and show that our models
achieve good performance, and compute several hundred times faster than state-of-the-art methods.

We believe our work can be useful to both mathematicians and AI researchers. Our models can be
used to discover new stable dynamical systems, and our approach may serve as a blueprint for future
work on open problems in mathematics.
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2 Lyapunov functions

The stability of a dynamical system, i.e. whether its solutions remain bounded when time goes to
infinity, is a problem that intrigued mathematicians for centuries. It was studied by Newton, Lagrange
in the 18th century, and then Poincaré at the beginning of the 20th century, in the context of the three
body problem. A turning point happened at the turn of the 20th century, when Lyapunov showed,
among other things, that a system is stable if one could find for this system a kind of decreasing
entropy function, the Lyapunov function [18, 9, 24]. Existence of a Lyapunov function was later
shown to a necessary condition for stability for many classes of system [29, 25, 17]. Lyapunov’s
theorem is a very strong result, but unfortunately, it provides no clue about finding such a Lyapunov
functions, or even showing that one exists. Today, more than a century later, systematic ways of
finding Lyapunov functions are only known in a few special cases, and their derivation remains an
open problem in mathematics.

The mathematical problem can be presented this way: consider the dynamical system

ẋ = f(x), (2.1)

where x ∈ Rn and f ∈ C1(Rn) is the dynamics of x and satisfies f(0) = 0. Here C1(Rn) refers to
the functions that are continuously differentiable on Rn and ẋ refers to the derivative with time of
x. The goal is to know if the system has a stable equilibrium x∗ that can be taken without loss of
generality as x∗ = 0. Mathematically speaking, this means,
Definition 2.1. The system (2.1) is said stable when, for any ε > 0, there exists η > 0 such that, if
∥x(0)∥ < η, the system (2.1) with initial condition x(0) has a unique solution x ∈ C1([0,+∞)) and

∥x(t)∥ ≤ ε, ∀ t ∈ [0,+∞). (2.2)

In short, a system is stable if we can guarantee that the solution remains bounded and as small as
we like (this is represented by ε), provided that the initial condition is sufficiently small (this is
represented by η). What Lyapunov showed is that this is linked to the notion of Lyapunov functions
Definition 2.2. The function V ∈ C1(Rn,R+) is said to be a Lyapunov function if the following
condition are satisfied

V (0) = 0, V (x) > 0 for x ̸= 0, ∇V (x) · f(x) ≤ 0. (2.3)

The two first conditions can be replaced without loss of generality by V (x) > V (0) for any x ̸= 0.
Lyapunov’s main theorem is
Theorem 2.1 (Lyapunov 1892). If there exists a Lyapunov function to the system (2.1), then this
system is stable.

Most dynamical systems are unstable, for instance the solutions of the simple system ẋ(t) = x(t)
grow exponentially with time. The solutions, for x ∈ R, of ẋ(t) = 1 + x(t)2, always blow up before
t = π. No Lyapunov functions can be found for these systems. On the other hand, a stable system can
have an infinite number of Lyapunov functions. For the system ẋ0(t) = −x0(t) and ẋ1(t) = −x1(t),
V = a0x

2
0 + a1x

2
1 is a valid Lyapunov function for any choice of a0 > 0, a1 > 0.

There is no systematic way of finding a Lyapunov function. Mathematical approaches typically use
empircal techniques such as backstepping or forwarding ([9, Chap. 12]) on simple parameterized
candidates, to derive sufficient conditions on the parameters [12]. Computational techniques, such as
those implemented in SOSTOOLS [31, 32] can be used in special cases, like polynomial systems of
small degrees. See Appendix A for a discussion of other approaches (including neural networks).

3 Generating datasets

Creating a reliable dataset of problems and solutions that can be used to train transformer to discover
Lyapunov functions is one of the main challenges of this work. Since there is no systematic method
in general for finding a Lyapunov function for a given system, or even testing whether one exists, we
cannot create training datasets by randomly sampling instances of the problem and calculating their
solutions, as in previous works on problems with known solutions [8]. Instead, we introduce a new
technique, sampling a function V , and then finding a system that has V as a Lyapunov function. The
procedure is detailed in Appendix C, and can be summarized as follows.
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(step 1) Generate a function V at random, satisfying V (x) > V (0), ∀x ∈ Rn \ {0}.
(step 2) Compute the gradient∇V (x) and denoteHx = {z ∈ Rn | z ·∇V (x) = 0} the hyperplane2

orthogonal to∇V (x), for any x ∈ Rn.
(step 3) Select p ∈ {1, ..., n} at random and generate p vectors {ei}i∈{1,...,p} of this hyperplane.
(step 4) Generate at random k1 > 1 real-valued functions (fi)i∈{1,...,k1} and k2 ≥ 0 real-valued

functions (gi)i∈{1,...,k2} (k1 and k2 chosen at random) and denote fi = 0 for i ≥ k1 + 1.

(step 5) Build the final system f(x) = −(f2
τ3(i)

(x)(∇V (x))i)i∈{1,...,n} +
k2∑
i=1

gi(x)e
τ(i)(x), with

τ3 a random permutation of {1, ..., n} and τ a random function from N to {1, ..., n}.
(step 6) Simplify the final system, therefore masking obvious patterns from the generative process.

By selecting the functions V , fi and gi from particular classes, we can constrain this technique
to generate particular systems. We will use this technique to generate datasets of polynomial and
non-polynomial systems.

A key consideration when generating training data using backward techniques (i.e. generating
problems from solutions) is that the process should not be easily inverted. For example, when
training a model to predict the roots of polynomial, if the problem is presented in factorized form, e.g.
2(X−3)(X−5)(X−7), the language model can learn to “read” the solutions directly in the problem,
a much easier task than learning to solve from the developed polynomial 2X3−30X2+142X−210.

In the case of Lyapunov functions, a key step in preventing V from being easily inferred from the
expression of f , is the choice of the vectors ei. If we naively select for our ei an orthonormal
basis ofHx, calculated from∇V (x) (e.g. using Gram-Schmidt orthogonalization), coefficients like
1/|∇V (x)| will appear in the expression at step 3, with close to no chance of being simplified at
step 5, allowing the transformer to read V from the system, without learning any mathematics. On
the other hand, if the ei are simple enough to allow the 1/|∇V (x)| terms to simplify away, but not
diverse enough to spanHx, the systems generated will be less diverse, and models trained on the data
set will fail to generalize out of the training distribution, for lack of diversity in their training data.

Baselines for the polynomial case. In the particular case of polynomial systems, there are routine
methods to find polynomial sum-of-square Lyapunov functions with high accuracy, when such
functions exist (see Section A). We can use these techniques to generate a forward dataset, as follows:

(step 1) Generate a polynomial system at random
(step 2) Use a routine to find a potential polynomial and sum-of-square Lyapunov function.
(step 3) Keep the system if such function exists, restart from step 1 otherwise.

Because most random polynomial systems are not globally stable, this method is computationally
costly, and could not be used to generate training data.

Since a globally stable polynomial system does not necessarily have a polynomial sum-of-square
Lyapunov function, this dataset does not represent all globally stable polynomial systems. Yet, the
polynomial systems in this dataset have, a priori, a very different distribution from those generated
using the backward method described previously. This makes it a good evaluation benchmark.

4 Models and experiments

Models. We frame all problems as translation tasks [20, 6], and train sequence-to-sequence transform-
ers [34] to translate systems –represented as a sequence of mathematical symbols– into Lyapunov
functions, also represented as sequences, by minimizing the cross-entropy between model predictions
and correct solutions. We train models with 6 to 10 layers, 8 to 16 attention heads and embedding
dimension between 512 and 1024 (see Appendix B).

Datasets Models are trained on three datasets, with around 30,000,000 of different globally stable
systems each, generated using the “backward" technique from Section 3 (see Appendix D for details):

• small systems of polynomials, 2-3 equations, Lyapunov functions of degree up to 8
• large systems of polynomials, 3-6 equations, Lyapunov functions of degree up to 12
• non polynomial systems, 2-3 equations

2if ∇V (x) = 0 this is the whole space instead, but this does not change the method.

3



For evaluation, we introduce the “forward” dataset: polynomial systems in 2 or 3 variables, generated
using the method described at the end of Section 3. 3, 715 test examples were generated, running
SOSTOOLS for up to 2, 000 seconds.

Model evaluation. For any stable system, an infinite number of Lyapunov functions exist. At
evaluation, we check that the model predicts a valid sequence, representing a function V that V
satisfies equation 2.3. Model predictions use beam search with early stopping, normalizing log-
likelihood scores by their sequence length. We report results with for beam 1 (greedy decoding) and
50, and consider that the model is correct when one correct Lyapunov function is found.

Main results Our models can find a correct Lyapunov function in more than 95% of examples
in held-out test sets (Table 1). On these test sets, we compare our results with three prior works:
SOSTOOLS [31, 32], Fossil [1], Augmented NL [14]. Neither Fossil nor Augmented NL can predict
any correct solutions. This could be explained by the fact that Fossil and Augmented NL are solving
a harder problem: they are designed to find a stabilizing control and a Lyapunov function on the
system, whereas we only focus on finding a Lyapunov function. SOSTOOLS achieves 78% accuracy
on the small polynomial test set, but its performance drops when systems become larger, and it cannot
address non-polynomial systems.

On the forward test set (Table 2), our best model, trained on the non-polynomial dataset, achieves
83.1% accuracy with beam search. This demonstrates that models trained on “backward” distributions
(i.e. problems generated from their solutions) can generalize out of their training distribution. On the
forward test set, Fossil and Augmented NL achieve respectively 0 and 3% accuracy. SOSTOOLS
achieve 100%, this is by design: the dataset was constructed from systems that SOSTOOL can solve.

An interesting feature of our results on the forward test set is that the best model was trained on the
non-polynomial dataset (Table 2). Since all test examples are small polynomials, one would expect
models trained on polynomials systems to perform better. This suggests that training from more
diverse datasets, and harder instances, helps improve out-of-distribution generalization, even on easy
and specific problems. Additional results can be found in Appendix E.

Previous work Our work
Test set Fossil Augmented NL SOSTOOLS Beam 1 Beam 50

Small polynomial 0% 0% 78% 99.2% 99.3%
Large polynomial 0% 0% 16% 93.8% 95.1%
Non-polynomial 0% 0% N/A 97.1% 97.8%

Table 1: Model accuracy on backward (held-out) test sets. For
our models, training and test distributions are the same.

Training distribution Beam 1 Beam 50

Small polynomial 42.4% 77.1%
Large polynomial 35.8% 63.1%
Non-polynomial 38.6% 83.1%

Table 2: Model accuracy on the forward
test set. 8-layer models.

Finally, we note that on transformer-based models, Lyapunov function prediction is much faster than
in alternative models. To generate examples in the forward dataset, we needed to run SOSTOOLS
with a timeout of 2000s. Average evaluation time across all datasets was 2,471s for Fossil and 1,394s
for Augmented NL. On average, inference tine with our models is 0.4s per example with greedy
decoding, and 8.9s with a beam search of 50.

5 Discussion

These experiments demonstrate how an open mathematical problem, like discovering Lyapunov
functions, can be solved by transformers using supervised learning, so long an external method for
verifying model predictions is available. We show how training sets can be generated “backwards”
(problems from solutions). Yet, our results on the forward test set indicate that models trained from
backward sets can generalize to “regular” systems, and predict correct solutions with high accuracy.
This suggests that our models are learning the underlying mathematics, and not the generating
procedure. (In other words, it does not learn to invert the backward procedure we use for generating
our training data since examples in the forward dataset are not generated from solutions). To our
knowledge, this is the first attempt to recover a symbolic Lyapunov function in the general case
without resorting to numerical methods. It also proves to be much faster than previous computational
techniques.

From a mathematical point of view, this article proposes a new way of finding Lyapunov functions, in
a much larger framework than was possible so far, using current mathematical theories. While this
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systematic procedure remains a black box, its solutions are explicit and can be checked to ensure their
mathematical validity. This shows that language models can be used to solve problems from research
level mathematics. Although only a small minority of mathematicians currently utilize deep-learning
tools, it suggests that AI can help mathematicians make tremendous progress and may become a
central component in the future landscape of mathematical practice.
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Appendix

A Related works

The mathematical approaches to finding Lyapunov functions mainly consist in trying simple
parametrized Lyapunov function candidates and to find conditions on the parameters [9, 11]. Several
techniques such as backstepping or forwarding (see [9, Chap. 12] for more details) were developed
to exploit the structure of the system is particular cases. These approaches used to be limited to
a few special, or very simple, cases. However, with the increase in computing resources, more
complex parameterized Lyapunov functions could be tackled. In particular, tools were developed for
polynomial systems with a sum-of-squares polynomial function of a fixed degree, which belong to a
finite-dimensional space (whereas generic C1 and C∞ functions belong to an infinite dimensional
space). One well-known example of such tools is SOSTOOLS [31, 32]. This approach, however, is
not applicable to more general settings.

Several neural network approaches have been proposed in recent years [4, 14, 1]. They learn
Lyapunov functions using a vanilla 2-layer feed forward network. Models, trained on a dataset of
state-space samples, generate candidate Lyapunov function, while a Satisfiability Modulo Theories
(SMT) solver acts as a falsifier of the predicted Lyapunov function, by providing counter-examples.
This approach demonstrated its potential by finding correct Lyapunov functions for some well-studied
high dimensional systems. It has not been extensively studied on larger classes of systems.

Transformers [34] have been trained over synthetic datasets to solve various mathematical problems:
arithmetic [27], linear algebra [8], symbolic integration [20], symbolic regression [2] and theorem
proving [30]. The application closest to ours is [6], which focuses on the local stability of dynamical
systems, i.e. applications of the spectral mapping theorem.

B Model settings

In all experiments, we train sequence-to-sequence transformers [34] with 6 to 10 layers, 8 to 16
attention heads, and embedding dimensions from 512 to 1024. During training, we minimize the
cross-entropy between model predictions and correct solutions. The optimizer is Adam [19], with
a learning rate of 10−4. We use linear warmup over the 10000 first optimation steps, and inverse
square root scheduling. Models are trained on batches of 16 examples, over 4 V100 GPU with 32 GB
of memory.

After every epoch (300,000 examples), we evaluate the in-domain performance of our models on
a held-out test set of 10,000 examples, created with the same generator as the training set, with
greedy decoding (i.e. beam search of 1). We ensure that the training and test set do not overlap.
As in previous works [20], we note that model predictions are almost always syntactically correct:
predicted sequences that cannot be decoded as a function only account for 0.1% of the test set.
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C Generation procedure

C.1 Function generation

Following [20, 6], we represent functions as trees. We generate random functions by sampling
random trees with unary and binary internal nodes, and then randomly selecting operators for these
nodes, and variables and integers for leaves. Our binary operators are the four operations and the
power function. Unary operators are exp, log, sqrt, sin, cos, tan.

To generate polynomials, we randomly sample a given number of monomials, with integer or real
coefficients. The number of monomials, range of the coefficients, and the powers and number of
terms of each monomial, are randomly selected between bounds, provided as hyperparameters.

C.2 Backward generation

We build globally stable systems by first generating a Lyapunov function V at random, and then
building a dynamic system which has V as a Lyapunov function. The procedure is:

Step 1: Generate two random functions Vcross and Vproper

Vcross(x) =

m∑
i=1

(Pi(x))
2, (C.1)

with m a random integer, and Pi random functions verifying Pi(x) = 0. The nature of functions Pi

depends on the systems we want to generate (polynomial or not).

Vproper(x) =

(
n∑

i=1

αi,jx
βi

i x
βj

j

)
, (C.2)

with n a random integer, βi random positive integers and A = (αi,j)(i,j)∈{1,...,n}2 a random positive
definite matrix. Note that this guarantees that Vcross and Vproper are minimal in x = 0.

Step 2: Transform, by multiplication and composition, the components Vproper and Vcross:

1. with probability p1,c, replace

Vproper(x)← f(Vproper(x)) (C.3)

with f a random increasing function chosen from a pre-defined set of positive-functions
2. with probability p1,m, replace

Vproper(x)← (Vproper(x)− Vproper(0))g(h(x)), (C.4)

with g a random positive function from a pre-defined set of positive-functions and h a
sub-expression of Vproper.

3. for every k ∈ {1, ...,m}, with probability p2, replace

Pk(x)← fk(xk + Pk(x)), (C.5)

where fk is a function that is bounded by below with a minimum (not necessarily unique) in
xk and chosen at random from a pre-defined set of bounded-functions.

Step 3: Define the Lyapunov function V (x) = Vcross(x) + Vproper(x). Overall, we have

V (x) =

[
f

(
n∑

i=1

αi,jx
βi

i x
βj

j

)
− f(0)

]
g

(
p∑

i=1

ασ(i),σ(j)x
βσ(i)

σ(i) x
βσ(j)

σ(j)

)
+

m∑
i=1

fk(xk + Pk(x)),

(C.6)

where f = Id with probability 1 − p1,c, g = 1 with probability 1 − p1,m and fk(x) = x2 with
probability 1− p2 and σ is a random permutation and p ∈ {1, ..., n}.
Such a Lyapunov function satisfies

V (x) > V (0), ∀x ∈ Rn \ {0}. (C.7)
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Indeed,

V (0) =

m∑
i=1

fk(xk)

and V (x) > fk(xk) for any x ∈ Rn \ {0}, since g is positive, f is increasing and (αi,j)i,j∈{1,...,n}
is positive definite.

Step 4: Taking advantage of (2.3), for any x ∈ R, denote

Hx = {z ∈ Rn | z · ∇V (x) = 0}
the hyperplane orthogonal to∇V (x).

Then, for a random p ∈ {1, ..., n}, generate p vectors {ei}i∈{1,...,p} from this hyperplane as follows:

eij =


(∇V (x))τ2(i) if j = τ1(i)

−(∇V (x))τ1(i) if j = τ2(i)

0 otherwise,
(C.8)

with τ1 and τ2 random functions from N \ {0} into {1, ..., n}, such that τ1(i) ̸= τ2(i). This implies
that for any i ∈ {1, ..., n}

∇V (x) · ei = (∇V (x))τ1(i)(∇V (x))τ2(i) − (∇V (x))τ2(i)(∇V (x))τ1(i) = 0. (C.9)

Note that, so long∇V (x) ̸= 0, one can use this process to construct a generative family ofHx.

Step 5: Generate at random k1 real-valued functions (fi)i∈{1,...,k1} and k2 real-valued functions
(gi)i∈{1,...,k2}, where k1 ≥ 1 and k2 ≥ 1 are chosen at random. Denote fi = 0 for any i ∈
{k1 + 1, ..., n}.
Step 6: Build the system

f(x) = −
(
f2
τ3(i)

(x)(∇V (x))i
)
i∈{1,...,n} +

k2∑
i=1

gi(x)e
τ(i)(x), (C.10)

where τ3 is a random permutation of {1, ..., n} to itself and τ is a random function from N to
{1, ..., n}.

Overall, the function f satisfies

∇V (x) · f(x) = −

(
n∑

i=1

f2
τ3(i)

(x)(∇V (x))2i

)
≤ 0, (C.11)

hence V is a Lyapunov function of the system

ẋ(t) = f(x(t)). (C.12)

Step 7: Expand and simplify the equations of f (using Sympy), in order to eliminate obvious patterns
due to the generation steps (that the model could recognize and leverage), avoid equivalent systems
in the training set, and limit the length of training sequences. Polynomial systems are expanded into
normal form.

We consider two generation modes:

Polynomial generation: we generate polynomial systems with sum-of-square Lyapunov functions to
allow for easy comparison with existing methods such as SOSTOOLS [31, 32]. In this case, all Pi

are polynomials with no zero-order term and p1,c = p1,m = p2 = 0. Also, fi and gi are polynomials
(Appendix C.1). We generate fi with a degree lower or equal to half the maximal degree of gi and
a maximal value of coefficients of the order of the square root of the maximal value of gi. Since
the fi are squared in the final system, this allows f2

i and gi to have the same order, and prevents
the transformer from inferring unwanted additional information by looking at the higher degree
monomial.

Generic generation: Pi is generated as Pi(x) = Qi(x)−Qi(0), where Qi(x) is a random function
generated as per Appendix C.1 (and [20, 6]).
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D Datasets and encodings

We use the techniques from the previous section to generate several datasets of f(x) and V (x),
varying:

• whether or not the dataset contains only polynomial systems,
• the number of variables (and equations in the system, either small (2 to 3) or large (3 to 6)
• whether the system coefficients are integer or real.

Generated f and V , represented as trees, are encoded as sequences of tokens, using Polish notation
to enumerate trees. For system coefficients, we use three encoding schemes for system coefficients,
I10, I1000 for integers, and F10 for real numbers.

In I10 or I1000, integers as sequences of digits in base b = 10 or 1000, preceded by their sign (+ or
-). For example, the number 12345 is encoded as [+, 1, 2, 3, 4, 5] in I10 and as [+, 12, 345] in I1000.
Choosing b = 10 or b = 1000 is a tradeoff between the length of the encoded input and the size of
the vocabulary (and of the input and output embeddings).

In F10, we encode a real number rounded to 4 significant digits, as a sequence of three tokens:
the sign, the mantissa encoded as a sequence of digits in base 10 and the exponent, encoded as a
symbolic token from E-100 to E100. For instance, 3.14 is represented as 314 · 10−2 and encoded as
[+, 3, 1, 4, E-2].

When generating datasets, we eliminate systems with input sequences longer than Tx = 2048, and
ouput sequences longer than Ty = 1024, to avoid very long sequences that would exhaust GPU
memory.

E Additional results

E.1 In-domain performance

We report the in-domain performance of our models, for different number of layers and attention
heads (dimension 1024), by evaluating them on a fixed validation set of 10,000 examples, generated
as per Section 3, using beam search of 1 (greedy decoding).

layers=6 layers=8 layers=10
dataset equations coefficients hs=8 hs=10 hs=12 hs=16 hs=8 hs=10 hs=12 hs=16 hs=8 hs=10 hs=12 hs=16

Polynomial 2-3 Integer 98.4% 98.9% 99.0% 99.0% 99.0% 99.2% 98.8% 98.8% 99.3% 99.% 98.9% 99.0%
Polynomial 2-3 Float 87.0% 88.4% 87.3% 86.9% 87.7% 87.1% 86.0% 87.1% 87.7% 86.2% 87.8% 87.4%
Polynomial 3-6 Integer 95.4% 95.9% 95.9% 93.1% 93.9% 96.2% 95.7% 96.5% 93.1% 95.9% 96.5% 94.2%

Non-Polynomial 2-3 Integer 95.6% 96.8% 96.5% 96.1% 96.8% 97.2% 97.0% 96.9% 97.0% 96.8% 95.5% 95.0%

E.2 Out of domain generalization

We report the performance of our models (for various depths, 16 heads, and 1024 dimensions) and
the impact of batch size, on the forward dataset, generated according to the method presented in
Section 3. Note: results for the large polynomial training sets are limited to forward test set examples
with 3 equations.

layers=6 layers=8 layers=10
dataset equations coefficients bs=1 bs=10 bs=50 bs=1 bs=10 bs=50 bs=1 bs=10 bs=50

Polynomial 2-3 Integer 42.3% 60.1% 73.9% 42.4% 62% 77.1% 41.7% 59.8% 76.9%
Polynomial 2-3 Float 41.5% 52.6% 70.4% 39.8% 51.3% 67.5% 38.1% 52.1% 68.2%
Polynomial 3-6 Integer 38.1% 50.5% 61.1% 35.8% 50.8% 63.1% 37.4% 51.3% 65.7%

Non-Polynomial 2-3 Integer 43.1% 64.8% 82.1% 38.6% 64.7% 83.1% 36.4% 62.6% 78.9%
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