
Solving Math Word Problems by Combining
Language Models With Symbolic Solvers

Joy He-Yueya, Gabriel Poesia, Rose E. Wang, Noah D. Goodman
Stanford University

{heyueya, poesia, rewang, ngoodman}@stanford.edu

Abstract

Automatically generating high-quality step-by-step solutions to math word prob-
lems has many applications in education. Recently, combining large language
models (LLMs) with external tools to perform complex reasoning and calculation
has emerged as a promising direction for solving math word problems, but prior
approaches such as Program-Aided Language model (PAL) are biased towards
simple procedural problems and less effective for problems that require declarative
reasoning. We propose an approach that combines an LLM that can incremen-
tally formalize word problems as a set of variables and equations with an external
symbolic solver that can solve the equations. Our approach achieves comparable
accuracy to the original PAL on the GSM8K benchmark of math word problems
and outperforms PAL by an absolute 20% on ALGEBRA, a new dataset of more
challenging word problems extracted from Algebra textbooks. Our work highlights
the benefits of using declarative and incremental representations when interfacing
with an external tool for solving complex math word problems. Our data and
prompts are publicly available at https://github.com/joyheyueya/declarative-math-
word-problem.

1 Introduction

Learning to solve mathematical word problems is an important skill but can be challenging for
students. [5, 13]. A tool that can automatically generate step-by-step solutions to such problems has
the potential to provide personalized support for students working through word problems [14, 6] and
help educators with curriculum development [12].

Using few-shot prompting over large language models (LLMs) has recently emerged as a promising
approach for solving math word problems [15, 17, 7]. The chain-of-thought (COT) [15] prompting
method presents explicit intermediate reasoning steps to the LLM to further enhance its reasoning
capability. However, LLMs often struggle with performing arithmetic operations [8, 9, 15]. To
address this, [15] uses an external calculator to evaluate the arithmetic operations in the generated
reasoning steps. Program-Aided Language model (PAL) [7] extends this idea by generating Python
programs as reasoning steps, offloading all calculations to a Python interpreter. Although programs
offer a direct representation of procedures, they require special devices to represent more abstract
mathematical declarations. For example, a statement like a = b+ 1 can be directly interpreted as
a variable assignment in Python if b is known, but not if b is unknown. Nonetheless, the equation
remains a valid mathematical expression even when b is unknown, suggesting that we instead want to
allow models to perform mathematical declarations beyond those that yield a procedure (for a full
example, see the problem in Figure 1).

In this work, we present an approach that combines an LLM, which can incrementally formalize
word problems as a set of variables and equations, with an external symbolic solver that can solve
the equations. Our approach achieves comparable performance to the original PAL on the GSM8K

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Workshop on MATH-AI.

https://github.com/joyheyueya/declarative-math-word-problem
https://github.com/joyheyueya/declarative-math-word-problem

Figure 1: Declarative solutions are typically more intuitive to write than procedural solutions for
challenging algebra word problems. PAL and COT try to generate procedural solutions that describe
a set of plans for achieving the goal, which are incorrect in this case. The DECLARATIVE prompting
generates a correct solution that describes the properties of the goal, which is generally more
appropriate for hard problems with no obvious procedural solutions.

[4] benchmark of math word problems. To evaluate current approaches on more challenging word
problems, we introduce ALGEBRA, a dataset of 222 word problems collected from open access
Algebra textbooks. We show that our approach outperforms PAL by an absolute 20% on ALGEBRA.
Our work highlights the effectiveness of incrementally generating declarative formalizations when
interfacing with an external tool for solving complex math word problems.

2 Related work

Recent studies have explored the use of few-shot prompting over LLMs for solving math word
problems [15, 17, 7]. The chain-of-thought [15] prompting method presents explicit intermediate
reasoning steps to the LLM to improve its reasoning capability. Since LLMs often make arithmetic
errors [8, 9, 15], several prior works [15, 3] have experimented with using an external calculator to
carry out the operations generated by LLMs. This generally improves final performance by less than
5% on GSM8K. Program-Aided Language model [7] extends to more complex arithmetic by gener-
ating Python programs as reasoning steps and using a Python interpreter to perform the calculations.
However, generating Python programs carries a strong bias toward procedural calculations and does
not work well for word problems that do not have a straightforward procedural solution.

3 Our Approach: Equipping an LLM With an External Symbolic Solver

Our approach for solving a math word problem consists of two steps: (1) declarative and incremental
formalization using an LLM and (2) solving equations using a symbolic solver.

3.1 Declarative and incremental formalization using an LLM

To solve a math word problem, we first use an LLM to formalize the problem as a set of variables
and equations. Recently, using few-shot prompting over LLMs has emerged as an effective approach
for natural language understanding and decomposition. Few-shot prompting is a technique that uses
LLMs to solve a task by providing the LLMs with a few demonstrations of the task as part of the
input at inference time [1]. In this technique, the demonstrations (i.e., examples of input-output pairs)
are concatenated into a prompt, which is passed to the model along with the new input to generate

2

Figure 2: An example of a math word problem and its solution from the DECLARATIVE prompt.
Variables and equations are in red.

an output. Formally, a set of k input-output examples {(xi, yi)}ki=1 are concatenated in a prompt
p ≡ (x1, y2)||(x1, y2)||...||(xk, yk) where || denotes the concatenation of examples. At inference
time, p||xtest is passed to the model where xtest denotes a new input instance, and the model attempts
to complete p||xtest by generating the output ytest.

To formalize word problems using few-shot prompting, we introduce the DECLARATIVE prompt
p ≡ (x1, y2)||(x1, y2)||...||(xk, yk) where xi is the word problem in natural language, and yi is the
step-by-step solution to xi. In the DECLARATIVE prompt, yi consists of interleaved natural language
statements and formal variable or equation declarations in double-square brackets. Our approach aims
to generate solutions that formalize word problems based on a set of principles listed in Appendix A.
Figure 2 shows an example used in the DECLARATIVE prompt that we created according to these
principles. To solve a new word problem, xtest, we append it to p and pass p||xtest to an LLM, which
generates ytest as the solution for xtest.

3.2 Solving equations using a symbolic solver

The step-by-step solution generated by the LLM using the DECLARATIVE prompt includes the list of
variables and equations that describe the word problem but does not provide the final answer (see
Figure 2). Instead of relying on the LLM to solve the equations directly, we pass the equations to an
external symbolic solver to do the calculation. In this work, we use SymPy [11], a Python library
for symbolic computation, to algebraically solve a system of equations extracted from the solution
generated by the LLM.

4 Experimental Setup

4.1 Datasets

We evaluate our approach on two math word problem datasets: GSM8K [4] and a new dataset called
ALGEBRA 1. We use the GSM8K test set, which contains 1319 math word problems at grade-school
level. To evaluate our approach on more challenging problems, we curated ALGEBRA, which consists
of 222 word problems from two open-access Algebra textbooks: Basic Algebra with Applications
([16]; released under the Creative Commons Attribution-ShareAlike license) and Elementary Algebra
2e ([10]; released under the Creative Commons Attribution license). We took every word problem that
has a solution in these textbooks. The resulting dataset includes word problems covering all topics
leading up to System of Equations, with the exception of problems related to geometry, graphing, or
inequalities.

1The ALGEBRA dataset is publically available at https://github.com/joyheyueya/declarative-math-word-
problem.

3

https://github.com/joyheyueya/declarative-math-word-problem
https://github.com/joyheyueya/declarative-math-word-problem

4.2 Baselines and variants of the DECLARATIVE prompting

We consider three methods: chain-of-thought (COT) prompting [15], Program-Aided Language model
(PAL) [7], and our DECLARATIVE prompting combined with SymPy (DECLARATIVE + SymPy).
We created two different prompts for each prompting method. The first prompt (8-shot) uses the same
set of eight examples used in prior work [15]. The second prompt (3-shot) uses three examples that
we designed to help illustrate step-by-step and declarative thinking and the formalization format we
expect.

For our DECLARATIVE prompting method, we experimented with three variants.

1. DECLARATIVE3-shot + principles + SymPy: adding the list of principles in Table 2 at the
beginning of the prompt (see an example in Figure 3a).

2. DECLARATIVE3-shot + principles: using the LLM to directly calculate the value of the goal
variable (see an example in Figure 3b).

3. ONE-STEP DECLARATIVE3-shot + SymPy: formalizing the word problem in a single step
instead of incrementally (see an example in Figure 4).

We use Codex (code-davinci-002) [2] as the LLM for all methods. We use top-1 decoding and a
temperature of 0. We set max_tokens to be 600.

5 Results

GSM8K ALGEBRA

COT8-shot (original) 62.5± 0.16 45.3± 0.56
COT3-shot (ours) 58.9± 0.16 47.9± 1.18
PAL8-shot (original) 70.2± 0.25 51.7± 0.21
PAL3-shot (ours) 73.3 ± 0.13 56.2± 0.21
DECLARATIVE8-shot + SymPy 64.7 -
DECLARATIVE3-shot + SymPy 66.0± 0.33 -
DECLARATIVE3-shot + principles + SymPy 69.4± 0.65 76.3 ± 0.93
DECLARATIVE3-shot + principles 22.4± 0.27 -
ONE-STEP DECLARATIVE3-shot + SymPy 57.5± 0.06 -

Table 1: Problem solve rate (%) on GSM8K and ALGEBRA. We report the average and standard
deviation across three runs. The highest number on each dataset is in bold. For COT and PAL, we
ran both the 8-shot prompt used in the original papers and the 3-shot prompt we created.

On GSM8K (Table 1), our 3-shot prompt leads to a better performance than the original 8-shot prompt
for PAL and DECLARATIVE. PAL outperforms DECLARATIVE across both sets of comparable exam-
ples, but using our DECLARATIVE prompting method with the 3-shot prompt (DECLARATIVE3-shot +
principles + SymPy) gives a performance equivalent to the original PAL (PAL8-shot (original)).

Interestingly, prepending the list of principles to the DECLARATIVE prompt (DECLARATIVE3-shot +
principles + SymPy) leads to a better performance on GSM8K than DECLARATIVE3-shot + SymPy.
Asking the LLM to solve the equations directly leads to a dramatic drop in accuracy (from 69.4%
to 22.4%), which highlights the benefit of using an external solver. Additionally, our DECLARA-
TIVE prompting benefits from incremental formalization, as shown by the performance gap between
the incremental version (DECLARATIVE3-shot + principles+SymPy) and the non-incremental variant
(ONE-STEP DECLARATIVE3-shot + SymPy).

On ALGEBRA (Table 1), our approach (DECLARATIVE3-shot + principles + SymPy) achieves the
highest accuracy among all methods, outperforming PAL by an absolute 20%. The accuracy of
the original COT drops from 62.5% on GSM8K to 45.3% on ALGEBRA, which demonstrates that
problems in ALGEBRA are generally harder than those in GSM8K. The main reason that the
DECLARATIVE prompting method works better than COT and PAL on ALGEBRA is that it is less
intuitive to generate procedural solutions to Algebra problems that require declarative reasoning (see

4

an example in Figure 1). Although our 3-shot prompt improves the performance of COT and PAL on
ALGEBRA compared to the original 8-shot prompt, our DECLARATIVE method is still much more
effective than COT and PAL.

6 Conclusion

We present an approach for automatically generating step-by-step solutions to math word problems
by equipping an LLM with an external symbolic solver. Our approach uses an LLM to incrementally
formalize word problems as variables and equations and avoids arithmetic errors by using an external
symbolic solver that can solve the equations. Our approach achieves comparable accuracy to the
original PAL on GSM8K and improves over PAL by an absolute 20% on a new dataset consisting of
harder word problems from Algebra textbooks. We demonstrate the effectiveness of using declarative
formalization when interfacing with an external tool for solving complex math word problems.
Additionally, encouraging incremental formalization is beneficial, especially when using declarative
representations. Our approach is particularly useful for math education since many advanced math
problems can be divided into separate conceptual pieces, with one piece being declarative and the
other involving procedural knowledge.

References
[1] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,

G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

[2] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, et al. Evaluating large language models trained on code. arXiv
preprint arXiv:2107.03374, 2021.

[3] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W.
Chung, C. Sutton, S. Gehrmann, et al. Palm: Scaling language modeling with pathways. arXiv
preprint arXiv:2204.02311, 2022.

[4] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek,
J. Hilton, R. Nakano, et al. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

[5] D. D. Cummins. Children’s interpretations of arithmetic word problems. Cognition and
instruction, 8(3):261–289, 1991.

[6] J. del Olmo-Muñoz, J. A. González-Calero, P. D. Diago, D. Arnau, and M. Arevalillo-Herráez.
Intelligent tutoring systems for word problem solving in covid-19 days: could they have been
(part of) the solution? ZDM–Mathematics Education, pages 1–14, 2022.

[7] L. Gao, A. Madaan, S. Zhou, U. Alon, P. Liu, Y. Yang, J. Callan, and G. Neubig. Pal: Program-
aided language models. arXiv preprint arXiv:2211.10435, 2022.

[8] D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. Song, and J. Stein-
hardt. Measuring mathematical problem solving with the math dataset. arXiv preprint
arXiv:2103.03874, 2021.

[9] A. Lewkowycz, A. Andreassen, D. Dohan, E. Dyer, H. Michalewski, V. Ramasesh, A. Slone,
C. Anil, I. Schlag, T. Gutman-Solo, et al. Solving quantitative reasoning problems with language
models. arXiv preprint arXiv:2206.14858, 2022.

[10] L. Marecek, M. Anthony-Smith, and A. H. Mathis. Elementary Algebra 2E. OpenStax, 2020.

[11] A. Meurer, C. P. Smith, M. Paprocki, O. Čertík, S. B. Kirpichev, M. Rocklin, A. Kumar,
S. Ivanov, J. K. Moore, S. Singh, et al. Sympy: symbolic computing in python. PeerJ Computer
Science, 3:e103, 2017.

5

[12] O. Polozov, E. O’Rourke, A. M. Smith, L. Zettlemoyer, S. Gulwani, and Z. Popović. Personal-
ized mathematical word problem generation. In Twenty-Fourth International Joint Conference
on Artificial Intelligence, 2015.

[13] N. Pongsakdi, A. Kajamies, K. Veermans, K. Lertola, M. Vauras, and E. Lehtinen. What
makes mathematical word problem solving challenging? exploring the roles of word problem
characteristics, text comprehension, and arithmetic skills. ZDM, 52:33–44, 2020.

[14] S. Ritter, J. R. Anderson, K. R. Koedinger, and A. Corbett. Cognitive tutor: Applied research in
mathematics education. Psychonomic bulletin & review, 14:249–255, 2007.

[15] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. Chi, Q. Le, and D. Zhou. Chain of thought
prompting elicits reasoning in large language models. arXiv preprint arXiv:2201.11903, 2022.

[16] I. G. Zaigralin. Basic Algebra with Applications. Ivan G. Zaigralin, 6 edition, 2018.

[17] D. Zhou, N. Schärli, L. Hou, J. Wei, N. Scales, X. Wang, D. Schuurmans, O. Bousquet, Q. Le,
and E. Chi. Least-to-most prompting enables complex reasoning in large language models.
arXiv preprint arXiv:2205.10625, 2022.

6

A Principles for declarative solutions

Principles for declarative solutions

1. Each sentence in the solution either introduces a new variable or states a new equation.
2. The last sentence gives the goal: which variable will contain the answer to the problem.
3. Each equation only uses previously introduced variables.
4. Each quantity is only named by one variable.
5. The solution uses all the numbers in the question.

Table 2: A list of principles we would like the solutions to satisfy.

B Prompt examples

All the prompts used in this work are publicly available at https://github.com/joyheyueya/declarative-
math-word-problem.

(a) Adding principles to the beginning of the DECLAR-
ATIVE prompt.

(b) Adding principles to the beginning of the DECLAR-
ATIVE prompt and calculating the final answer. The
final answer is in red.

Figure 3: The difference between “DECLARATIVE3-shot + principles + SymPy” and
“DECLARATIVE3-shot + principles” is that “DECLARATIVE3-shot + principles + SymPy” passes the
equations to SymPy to solve, but “DECLARATIVE3-shot + principles” asks the LLM to solve the
equations directly.

Figure 4: An example of formalizing a math word problem in a single equation.

7

https://github.com/joyheyueya/declarative-math-word-problem
https://github.com/joyheyueya/declarative-math-word-problem

	Introduction
	Related work
	Our Approach: Equipping an LLM With an External Symbolic Solver
	Declarative and incremental formalization using an LLM
	Solving equations using a symbolic solver

	Experimental Setup
	Datasets
	Baselines and variants of the Declarative prompting

	Results
	Conclusion
	Principles for declarative solutions
	Prompt examples

