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Abstract

Wiedijk’s list of 100 theorems provides a benchmark for comparing interactive
theorem provers (ITPs) and their mathematics libraries. As shown by the GHOSTS
dataset, large language models (LLMs) can also serve as searchable libraries of
mathematics, given their capacity to ingest vast amounts of mathematical literature
during their pre-training or finetuning phases. ITP libraries are the only other repos-
itories of comparable size and range of mathematical intricacy. This paper presents
the first comparison between these two unique mathematical resources, centered
on Wiedijk’s list. Beyond the intrinsic interest of such a comparison, we discuss
the importance of analyzing whether knowledge contained in LLMs (represented
by GPT-4 and Claude 2) matches that encoded in ITPs. This analysis contributes
thus further to advance the intersection between LLM and ITP technology (exam-
ples being tasks like autoformalization, LLM-guided proof generation, or proof
completion) by ensuring LLMs possess, beyond ITP code generation capabilities,
sufficient mathematical knowledge to carry out the desired formalization. The
dataset with our findings, called “LLMKNOW”, is made available to the public.

https://llmknow.friederrr.org

1 Introduction

Interactive theorem provers (ITPs), such as Lean (introduced in [16], currently at version 4 [30]) or
Isabelle (introduced originally in [32, 33] subsequently updated and expanded [34, 20]), which are
some of the most well-known examples of ITPs, have large libraries of formal proofs of mathematical
theorems associated to them. E.g., in the case of Isabelle, these are core libraries included in the main
distribution as well as external proof developments contained in the Archive of Formal Proof2; in
the case of Lean’s latest version, the Lean Mathematical Library [28], mathlib43, contains all the
pertinent mathematics.

Progress in ITPs has been steady, and as the burden on the person converting a natural-language proof
to a proof in the formal system of an ITP was alleviated in time [20], the libraries of formally verified
proofs grew to the point where a sufficient amount of mathematics is encoded that allows ITPs to be
used as a teaching support for undergraduate curricula (and beyond [7]). For example, undergraduate
mathematical textbooks exist where taught mathematics is formalized as it is developed [27].

In some instances, formalization has advanced to cover research-level mathematics. Some of the
notable examples are Szemerédi’s Regularity Lemma in extremal graph theory [17], hyper-dual

∗Corresponding author. The other authors are listed in random order.
2https://www.isa-afp.org/
3https://github.com/leanprover-community/mathlib4

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Workshop on MATH-AI.
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numbers in second-order automatic differentiation [37], schemes in algebraic geometry [9, 5] or the
Liquid Tensor Experiment [36, 10].

With the introduction of the first version of ChatGPT in November, which was widely adopted,
investigating LLMs mathematical abilities has received renewed impetus, e.g. [6, 19, 26, 3]. All of
these works have focused on the abilities of ChatGPT (also known as “GPT-3.5”) or GPT-4, which
were shown to trump all other models at the time.

In [19], it has been noted that LLMs are able to function well as mathematical search engines.
This begs the question: Where do they search? LLMs obtain their knowledge during pre-training
and finetuning - and it is plausible that LLMs have been trained on the entirety of public sources
of mathematical data, such as the arxiv.org preprint repository, or various digitized books. For
the most prominent LLMs, e.g. GPT-4 [31], the precise collections of training data has not been
revealed. LLMs, therefore, can be assumed to have encoded most of the digitally accessible books on
mathematics in their architectures and weights.

Whereas for ITPs the mathematical knowledge they encode is completely transparent (even if it may
be hard to parse their formal language), for LLMs it is unknown what and how much mathematics
they have seen, which raises the question of whether the (implicit) mathematical knowledge base of
an LLM can (at least) match the (explicit) knowledge base of ITP.

Aside from an academic interest in comparing the knowledge bases, there is a second reason, more
pertinent reason for such comparison, coming from the growing trend of merging LLM technology
with ITP technology: LLMs have been used to perform autoformalization (converting a natural-
language proof to a formal proof that an ITP can ingest) as well as proof completion and generation
(suggesting the next step in a partially elaborated proof/generation an entire formal proof from a
formal statement). It is unreasonable to expect LLMs to carry out these tasks successfully if an LLM
does not have a sufficiently advanced level of mathematics encoded to comprehend its formalization
task. E.g., if an LLM does not have any understanding of the notions such as “compact” and “closed”,
it is unreasonable to assume it will be able to autoformalize the natural-language statement: “A subset
of a compact metric space is compact if and only if it is closed.”. We elaborate further on these
matters in Appendix D.

The fairest comparison of the knowledge contained in LLMs vs ITPs would be a brute-force com-
parison, where their entire knowledge is compared. Because evaluating LLM output that consists of
university-level mathematics is difficult, it cannot be outsourced to some of the many commercial
crowdsourcing services. Brute-force comparison, by comparing long lists of statements and proofs
sourced from books, is thus not possible. To keep the evaluation effort reasonable, we, therefore, focus
on a proxy benchmark for assessing knowledge: Freek Wiedijk’s list, Formalizing 100 Theorems4.
We motivate this choice and elaborate on how we test for knowledge inclusion in Section 3 and
Appendix B, where we present a more detailed motivation for the use of Wiedijk’s list.

In summary, our contributions are:

• A first analysis of how an LLM approach that digitizes and distills knowledge from many
textbooks in an opaque manner compares to the largest formal libraries of mathematics;

• The first evaluation of LLMs on university-level mathematics using best-practice prompt
engineering;

• A dataset that accompanies this LLM evaluation, where we collect information on how well
the LLM did on each ITP-related item.

2 Related Work

LLMs are typically evaluated on high school-level or lower undergraduate-level mathematics [14,
21, 42]. Few articles evaluate LLMs on graduate-level mathematics [19]. Recently, there have been
attempts to integrate LLMs with ITPs by designing datasets that contain formal and natural-language
proofs side-by-side [1], respectively, to use LLMs to complete formal proofs [18]. Turning ITP
systems into “dojos”, e.g. [46], that allow for convenient extraction of proof traces (as well as other
metrics that can help guide proof search) will further accelerate the convergence of LLMs and ITPs
to automate mathematics.

4https://www.cs.ru.nl/%7Efreek/100
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3 Methodology

3.1 ITP Proof Sources

The best way to compare the knowledge encoded in an LLM to the knowledge encoded in libraries
accompanying an ITP would be, as mentioned, a complete comparison: For each item in an ITP
library, a series of prompts are submitted to the LLMs of choice, testing whether the LLM is
knowledgable about that item.

Human evaluation of advanced mathematics that approaches research level is expensive. We, therefore,
focus on evaluating a smaller dataset of ITP library items to lower the evaluation effort: Our approach
centers on Freek Wiedijk’s list, Formalizing 100 Theorems5, which is a popular progress tracker for
formalization progress. This benchmark contains both well-known and difficult theorems, making
their formalization highly non-trivial: at the time of writing, only 88 theorems from the list have been
proven with the best-ranked ITP, Isabelle. (However, all ITPs taken together have proved 99 out of
the 100 formalized theorems. The only exception is Fermat’s Last Theorem6.) Some of the theorems
from this list, even though they are of low mathematical difficulty and can be found in undergraduate
textbooks, have only recently been formalized, which highlights the importance of this benchmark.
Examples of such easy theorems formalized late are Ptolemy’s theorem or Stirling’s formula7. From
this set of theorems, we select 50 theorems randomly (see Figure 2 for a list of the precise theorems
that were selected).

3.2 LLM Evaluation Protocol

The evaluation of the output of the language model is performed by the authors, who are all mathe-
maticians. 10% of data points were randomly checked and verified in order to make sure that the
evaluators’ grade agrees with the verifiers’ grade. We use GPT-4, via the API with temperature 0.7,
as the LLM of choice since it has the best-reported performance among LLMs [19, 6], and Claude 2
(via the web8) as a fallback.

For each theorem, GPT-4 was asked, using standardized prompt templates, to complete the following
three tasks:

1. Statement. State the full theorem (given only the name of the theorem from Wiedijk’s list).

2. Items. Explain and define all constituent items from the theorems, i.e., all definitions that
go beyond foundational mathematical objects like numbers or functions (for example, the
concept of a derivative), which are non-trivial to formulate in ITP. We have noted a priori in
our dataset what we understand to be non-foundational items that we expect to be given.

3. Proof. Prove the theorem. Then, reflect back if the proof was correct; otherwise, make
corrections.

These are wrapped in the following prompt engineering approaches, which comprises some of best,
recommended practices, as recommended in OpenAI’s cookbook9, OpenAI’s GPT practices10, see
also [24], that we detail below in the complete pipeline:

A. Impersonate. At initialization time, we ask it to impersonate a professional mathematician.

B. Proceed step by step. We instruct the model twice to proceed step by step: The first time,
when initializing it in the API (only available GPT-4), it should proceed in a stepwise manner
throughout its entire interaction. We reinforce this by asking it for a second time when

5https://www.cs.ru.nl/%7Efreek/100
6Which is in the process of being formalized and was arguably added to this list merely as a joke [8].
7In case of Stirling’s formula, in descending order of recency, a formalization was added to Lean’s mathlib4

in 2023, to MetaMath in 2017, to Isabelle’s Archive of Formal Proofs in 2016, and to the Coqtail library
associated to Coq and to HOL Light in 2010, respectively – according to GitHub commit history of the
relevant formalization file (except MetaMath, where the formalization of Stirling’s formula is located at
https://us.metamath.org/mpeuni/stirling.html.

8At the time of writing an API for Claude 2 is not publicly available.
9https://github.com/openai/openai-cookbook

10https://platform.openai.com/docs/guides/gpt-best-practices
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we present the proof to it. We further reinforce it by asking it to present a skeleton of the
theorem before producing the actual theorem.

C. Reflect on the output. After the LLM was asked to carry out the proof, we asked it to reflect
on it in order to allow it to make any amendments. Asking the model to review its output
has been shown to be a strategy that, in some cases, leads to correct answers on a second
try [22]. Our rating protocol was such that a second, corrected attempt was rated as a 1.

We refer to Appendix C for a diagram illustrating the full pipeline outlined above, as well as the full
prompts submitted to the LLM(s).

For each of these three sections (statement, items, proof11), we rate each output on a binary 0-1 scale,
representing incorrect-correct. The reason for this choice of course rating is that either a piece of
knowledge is in the LLM’s mathematical library or it is not. Therefore, a fine-grained scale, such
as that introduced in [19, 43] to rate how well an LLM responds to a prompt, is not required. We
have evaluated 50 randomly selected theorems from the list of 100 theorems by F. Wiedijk in this
way. For each of the 50 theorems, four prompts were provided to the LLM, with additional follow-up
questions. In total, we, therefore, have rated more than 200 outputs of GPT. Additionally, if the output
was not convincing, we followed up with questions as described in the next paragraph. Unless the
response was perfect, in order to make sure authors engaged with the task, a short justification was
asked from raters for the reason why a 0 or 1 was given.

Suppose the output is rated as 0 on one of the three sections (statement, item, proof11). In that case,
our policy is to ask the prompt corresponding to that section again at most three times until it gets
it right: We ask two times using ChatGPT, increasing temperature by 0.1 each time, preserving the
previous chat interaction so that the LLM can make use of all the previous interactions. We customize
these subsequent prompts to the error that was made and provide individualized feedback to assess
whether we can steer the LLM in the right direction. On the last attempt, if no sufficiently good
answer was given so far, our policy is to use Claude 2 to ask for a new generation of all the sections,
as described above, until the desired one (because API access is not available at the time of writing
for Claude 2, and we do not have a separate way to initialize it, we simply ask the “impersonation” as
the first prompt, before we start prompting the LLM for the full statement etc.).

We elaborate in Appendix A on why we have not used techniques such as Chain-of-Thoughts nor
why we haven’t implemented voting strategies to generate proofs. See Appendix F for a specific
example how a datapoint from the LLMKNOW dataset looks like.

We note that formal proofs are always larger than non-formalized proofs (which is captured by the
de Bruijn factor [15, 44]). Moreover, during the process of formalization, small omissions from the
original are regularly observed. In particular, this happens if the result is new or complex, as in the
case of the more recent formalizations within the Archive of Formal Proofs:

• For undergraduate-level mathematics: For the proof of Gödel’s Incompleteness Theorem,
L.C. Paulson mentions in [35]: “[...] other technical problems had to be solved in order to
complete the argument”.

• For research-level mathematics: The authors mention in [17]: “Much of the effort in this
project had not to do with the formalization itself but with ascertaining precisely what to
formalize. Although this material is considered mathematics of central importance, sources
are conflicting about the basic definitions”.) One of the major benefits of using ITPs is to
uncover such omissions and fix them.

Because the pen-and-paper proofs on which LLMs are trained also suffer from such omissions, an
approach where an LLM is asked to construct a proof at a similar level of detail to that of an ITP,
which contains various fixed omissions, would not be a fair comparison. The level of detail in proofs
we aim for should, therefore, be similar to the level of detail in a pen-and-paper proof.

The total score per item is the mean of the individual scores. We note that it is necessary to collect
all these scores independently: A correct response regarding, e.g., the proof of a theorem, does not
–perhaps counterintuitively– a priori imply that the subsequent, easier questions will be answered
correctly as well. The reason is that LLMs are known to act as stochastic parrots occasionally, which

11We rate the combined effect of both the first prompt asking for a proof, as well the second prompt, asking it
to reflect on the proof, which sometimes leads to new, improved proofs.
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in this case would mean they have simply memorized a proof but contain no “working knowledge”
about the item that makes up that proof. (This is unlike the case for humans, where, if they quote the
proof of a theorem correctly, in all likelihood, they will be familiar with mathematical concepts that
that proof employs.)

We do not penalize an LLM for dubious outputs such as:

• returning more information than what was asked for (including if that information is wrong).
• getting minor details wrong, such as describing a counterexample that is, in effect, not a true

counterexample.
• Being slightly vague at some stages in the proof.

The reason for this lower bar of tolerance is that our aim is not to have an LLM devise a perfect proof
with logically flawless chains of reasoning. Rather, we allow it to get some of the reasoning wrong
as long as it can convince us that it has a good grasp of the knowledge of the mathematical objects
involved in the statement of the theorem and its proof. If we are confronted with proofs that aren’t
a clear 0 or 1 because some mistakes are present, we adopt the criterion of marking it as a 1 if we
believe that progress was sufficiently good and understanding of the mathematical object sufficiently
deep that by having longer interactions with the LLM we could ultimately get it to output a longer
proof. What matters to us is that the right mathematical information can be elicited.

4 Results and Conclusion

Because both LLMs and ITPs are being rapidly developed, we do not focus on evaluating a single
(LLM, ITP) pair but investigate whether, for each datapoint in the ITP library (specifically, the
portion that overlaps with the scope of our benchmark), some LLM exists that matches it. In
mathematical terms, we are interested in clarifying whether the following holds: ∀ ITP ∃LLM :
knowledge(LLM) ≈ knowledge(ITP).12

Please see the end of the Appendix for an overview of the performance of GPT-4 on each of the 50
theorems after the first proof, which was the most challenging section. The average score on the proof
section was 0.68, i.e., 68% of all the proofs were satisfactory to our standards. On the statements
and items sections, scores were 94% and 98%, respectively. We have followed the majority in this
case. We refer to Appendix E for further noteworthy observations about how well the LLM proved
theorems.

Some theorems of the list of 100 theorems are actually collections of theorems, for example, in the
case of “Lebesgue measure and integration”. In this case, one ITP, HOL, seems to prove a specific
lemma about the open halfplane13, whereas the other ITPs define lebesgue measure and integral (as
expected).

On Wiedijk’s list, we are satisfied that the mathematical knowledge encoded in LLMs matches that of
ITP libraries. Nonetheless, further investigations need to be carried out to ensure that LLMs possess
sufficient mathematical knowledge (in order to carry out autoformalization, for example): Beyond for
raw knowledge, it is important to assess whether LLMs are also capable of applying proof techniques.
This is particularly relevant for the miniF2F dataset [48], which is relevant for autoformalization and
uses problems from mathematical olympiads, on which it is known that LLMs struggle [19].

We conclude that future work is required to assess how strongly an LLM needs to be conditioned on
mathematical knowledge in order to be able carry out various formalization tasks (autoformalization,
proof generation, proof completion) successfully.

12The converse analysis, whether ∀LLM ∃ ITP : knowledge(LLM) ≈ knowledge(ITP) is not relevant for
autoformalization, but would be appropriate for an effort of what could be called “autonaturalization”, which
would investigate whether an ITP can match the level of knowledge of an LLM. This is of inferior interest
because almost all formal ITP theorems in existence are of human invention and thus are represented in natural
language in books or texts. (Exceptions to this exist in the form of theorems of combinatorial flavor that are
well-suited for automated theorem provers and have been discovered with their use, such as the solution to the
Robbins Conjecture [29].) Since the informal, natural-language representation of a theorem is already available
somewhere, it does not need to be deduced from formal material. Furthermore, some ITPs, such as Mizar,
already have some support for presenting formal mathematics in a language similar to natural-language [2].

13https://www.cs.ru.nl/~freek/100/hol.html#86
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A Issues with In-Context Learning and Voting for Open-Ended LLM Outputs

In our evaluation pipeline, we ask the model to output a statement of the theorem, its constituent
items, and a proof (see Figure 1 from Section C. Here, we indicate why in-context learning and voting
do not apply to enhancing proof performance.

Various prompt-engineering techniques have emerged in the past year, some the most effective being
in-context learning ones such as Chain-of-Thoughts (CoT) [41], or Tree-of-Thoughts (ToT) [47]
that have established themselves as performance-enhancing techniques for various tasks, including
math word problems [41] from the GSM8K dataset [14], games based on reasoning such as the 24
puzzle14 [47], or numerical reasoning tasks [11]. These in-context learning techniques all revolve
around letting a model elaborate longer on a task by making its reasoning explicit and using examples.
This approach, therefore, works best when problem categories are large / task instances are many
so that the model can be given a few examples of (annotated) problem-solution pairs before being
prompted with another problem for which a solution is sought. Implementing such prompt-enhancing
techniques by letting the model make its reasoning more explicit is difficult in a setting like ours,
where open-ended outputs are needed. In particular, when outputting proofs, it is not straightforward
how one could give the LLM an “example proof”, as required by such an in-context learning technique,
that does not yet contain all the essential ideas of the proof. Supposing this were possible, the diversity
of proofs that the same statement can have15 complicates matters further since it is not clear which
proof to aim for when learning it in-context.

Voting [40, 25] has shown to offer performance benefits if an LLM has difficulties with a specific
type of task. This technique works best where there is an easy criterion to judge whether the
output in one run was similar to the output in another run, as aggregating them and establishing
a majority automatically is straightforward. This is difficult for open-ended approaches like ours
since LLM outputs are highly heterogeneous and cannot be reduced to a single answer. Executing
such a voting technique would require significant manual inspection of the output: In two different
runs, proofs might be produced that are both correct but different, and therefore, an automatic
aggregation procedure will not work. Nonetheless, repeating a prompt can help elicit a good response.
Therefore, we have used the approach to allow the LLM to reflect on its output, as this does not
require comparisons of outputs.

We note that mathematical problems from datasets like MATH [21] or TheoremQA [12] have a much
more constrained scope; in particular, both support the concept of a “final answer”, which can easily
be compared to a ground truth, which does not exist in the present article.

B Motivating Wiedijk’s List of 100 Theorems

We argue on the following grounds that using this list of theorems is a reasonable test of whether
LLMs’ breadth of mathematical knowledge rivals that of ITPs:

1. To formulate each theorem in an ITP, all the concepts appearing in the proof statement
need to be formalized first (and various properties about each of these concepts, as well
as relations between them, need to be known as well, as they are used in the proof of
the theorem16). We, therefore, require our assessment (outlined below, in Section 3.2)
to recursively enquire the LLM about all concepts required to formulate the statement,
similar to what a library of an ITP would contain. Because this list touches diverse areas of
mathematics, it highlights the coverage of mathematics of ITP libraries well.

2. Because these 100 theorems are not tied to any specific ITP, we get a sense of how an
LLM compares against all of the ITP libraries (Archive of Formal Proofs, mathlib4, etc.)
combined. Furthermore, they are an entrenched metric that is often used by the community.

3. Previous research on the mathematical capabilities of LLMs involved creating datasets of
mathematics that span high-school (GSM8K), undergraduate-level (MATH), and graduate-
level or olympiad-style mathematics (GHOSTS [19]). From these, it is known that LLMs are

14https://en.wikipedia.org/wiki/24_(puzzle)
15An extreme example is the Pythagorean theorem with hundreds of known proofs [4].
16For example, in order to prove that a function f : K → R on a compact, topological space K attains a

minimum and a maximum, properties about compact spaces need to be known.
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Figure 1: This figure shows the pipeline that was executed to evaluate the LLM output. The yellow
boxes show which type of prompt engineering was performed and where it was applied. The blue
boxes show which of these methods made use of API initialization. The “theorem description” is
the description as taken from Wiedijk’s list. The “2×” emphasizes that a second proof output is
generated after asking the LLM to reflect on the proof. The dotted arrows indicate that, as described
in Section 3, this part was re-rated by human assessors if the output was not satisfactory.

fairly proficient at reproducing undergraduate mathematics: E.g., the MATH and GHOSTS
datasets cover a significant part of mathematical objects that typically appear in an under-
graduate curriculum. This alleviates us of the duty to re-check whether LLMs possess such
knowledge of undergraduate mathematics encoded by ITPs, which can be assumed to be
present. It frees us to investigate major theorems that are present in Wiedijk’s list (which
are not present in MATH or GHOSTS, that focus mostly on LLMs proving much smaller,
“unnamed” theorem).

C Prompt Templates and Data Generation Pipeline

Figure 1 shows the entire pipeline that was used to obtain the LLM output, starting from Wiedijk’s
list, as well as where prompt engineering was performed and of which type it was. The human
component in this pipeline solely pertains to rating the output.

The following prompt templates were used for each of the three sections, statement-items-proof
(where for the proof section, we use two prompts in order to allow the LLM to reflect on the output):

Statement-prompt (where {theorem} is the theorem name from Wiedjik’s list):

The following is a well-known statement or theorem: "{theorem}". Provide
a full, complete, and explicit formulation of it, of the form "*Theorem.
...*", as you would encounter it in a textbook.

Items-prompt:

Please explain all the individual, constituent concepts that make up
this complete and explicit formulation of the theorem. If all of the
constituent concepts are basic, such as numbers of functions, do not
elaborate on them.

Proof-prompt-main:

Now provide a proof of the statement. First, describe in a single
paragraph a skeleton of the proof. Then try to create a proof step by step
until you either succeed or have no idea how to proceed further.

Proof-prompt-reflect:

Now, take stock of what you have proved previously, reflect on it and make
any potential corrections.
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D On the Importance of Assessing LLMs’ Ability to Autoformalize

Autoformalization [39, 38] has seen a big push in the last years, and this trend is expected to accelerate,
as LLMs have recently been used to perform autoformalization [45, 23]. We recall:

1. The goal of autoformalization is to turn a mathematical text written in the usual, informal
style of natural language into a formal text that is parseable by an ITP;

2. Mathematical scenarios frequently arise in which humans make implicit operations (e.g.,
type conversions between the same number that is both a natural and a real number) that
have to be made explicitly for ITP (which is only possible if the proof that is to be formalized
is well understood in the first place).

Therefore, it is highly plausible that any LLM-like model, were it able to autoformalize a natural-
language statement/proof in a target ITP, would need to be intimately familiar17 with the mathematical
concepts and objects that are involved in that statement/proof in order to fill in the various gaps that
any natural-language statement/proof invariable contains and to connect the mathematical objects
presented in natural language with the corresponding formal ones, already present in the (library
associated to) an ITP.

To the best of our knowledge, existing research works on LLM-guided autoformalization and proof
completion/generation have operated under the assumption that LLMs possess sufficient mathematics
to carry out the assigned tasks. Nonetheless, even advanced models such as GPT-4 have been shown
to perform poorly on olympiad-level mathematical problems (e.g., see the GHOSTS dataset [19]), so
it is not plausible that older LLMs, such as PaLM and Codex, which are used by [45] as baselines,
have a deep understanding of the natural-language version of the proofs of the statements from the
miniF2F dataset, which deals with problems sourced from mathematical competitions. Therefore,
it is unclear whether the generally modest state-of-the-art performance that has been achieved so
far (e.g., autoformalization success rates were less than 35% on the miniF2F dataset, see Table 3
from [45]) is due to the inherent complexity related to formalization, or whether LLMs simply do not
encode a sufficiently advanced body of mathematics (definitions, proof techniques, etc.), on top of
which various formalization-related tasks are to be carried out.

E Noteworthy Observations

In just three cases, GPT-4 wasn’t able to generate a convincing formulation of the theorem directly
from the theorem name, as given on the list of 100 theorems. In just one case, it was not able to
explain all constituent items from a theorem formulation. The fault in this case was the ambiguous
name of the theorem, Ascending or Descending Sequences, which, after inspecting the ITP source,
revealed itself to be actually the Erdős–Szekeres theorem18

Even though ChatGPT does well on some more complicated theorems, it could not produce a
satisfactory proof for the Pythagorean theorem. It was very close on its second try, though it did not
produce the correct picture from its own instruction. Interestingly, on the third try, it attempted to mix
two different methods of proving the theorem but failed in the end.

The Königsberg problem can be understood as showing that no Eulerian path exists for the concrete
example of Königsberg or that an Eulerian path exists whenever the path is connected and every
vertex has an even degree. ChatGPT tried the latter, but the second part of the proof was incomplete.

We also noted that sometimes it did not went into sufficient detail in proofs, such as for the The Area
of a Circle theorem, where it initially gave only an intuitive argument from which we were not able
to assess whether it had some operational knowledge of the concepts involved in proving what the
area of the circle was (see Appendix F).

17We note that the wording that an LLM is “familiar” with a piece of mathematics is, strictly speaking, a case
of anthropomorphization. Nonetheless, we feel this abuse of language is acceptable since 1) it is difficult to avoid
it, as even the expression that an LLM “learns” is a case of it, and 2) it is clear what is meant: It is plausible that
if the training data contains sufficiently many cases where the involved mathematical objects appear, the LLM
will learn some form of the true mathematical relationships between the objects and be able to manipulate them
in a somewhat mathematically consistent way—similar to how sufficiently large and advanced LLMs learn to
use correct grammar [13].

18https://en.wikipedia.org/wiki/ErdÅŚsâĂŞSzekeres_theorem
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The Irrationality of the Square Root of 2

Fundamental Theorem of Algebra

The Denumerability of the Rational Numbers

Pythagorean Theorem

Gödel s Incompleteness Theorem

The Impossibility of Trisecting the Angle
 and Doubling the Cube

The Area of a Circle

Euler s Generalization of Fermat s Little Theorem

The Infinitude of Primes

Polyhedron Formula

Euler s Summation of 1 + (1/2)^2 + (1/3)^2 + ....

Fundamental Theorem of Integral Calculus

Insolvability of General Higher Degree Equations

De Moivre s Theorem

Green s Theorem

The Non-Denumerability of the Continuum

Formula for Pythagorean Triples

Schroeder-Bernstein Theorem

Leibnitz s Series for Pi

Sum of the Angles of a Triangle

Taylor s Theorem

The Solution of a Cubic

Arithmetic Mean/Geometric Mean

The Binomial Theorem

The Central Limit Theorem

0 1
Proof Ratings

The Number of Subsets of a Set

Pi is Trancendental

Konigsberg Bridges Problem

The Laws of Large Numbers

Bezout s Theorem

L Hôpital s Rule

Isosceles Triangle Theorem

Sum of a Geometric Series

e is Transcendental

Sum of an arithmetic series

Greatest Common Divisor Algorithm

Order of a Subgroup

Ascending or Descending Sequences

The Principle of Mathematical Induction

The Mean Value Theorem

Fourier Series

The Cauchy-Schwarz Inequality

The Intermediate Value Theorem

The Fundamental Theorem of Arithmetic

Divisibility by 3 Rule

The Triangle Inequality

The Birthday Problem

The Law of Cosines

Principle of Inclusion/Exclusion

Cramer s Rule

0 1
Proof Ratings

Figure 2: The ratings of all 50 theorems after the first proof attempt, carried out on GPT-4. An
incorrect proof is denoted by 0, while a proof that is convincing enough that the LLM understood the
concepts it was talking about and combined them in a meaningful manner (even if the proof may be
slightly erroneous) is denoted by 1.

12



F Dataset

We highlight how one datapoint from the LLMKNOW dataset looks like:

• The value of the theorem_name key is the name of the theorem from Wiedijk’s list.
• The value of the expected_items key is a list of items the raters expected the LLM to find.
• The value of statement is a list of list, where the first entry is 1 if the statement was correct,
0 otherwise. The second entry is a comment the rater may or may not make. There may be,
in total, at most four lists within this list, one for each attempt. If a 1 is encountered, then no
further lists should be present.
Analogous considerations hold for the items and proof key.

Here is how a single JSON datapoint related to the theorem The Area of a Circle looks like from our
dataset.

"theorem_name": "The Area of a Circle",
"expected_items": ["real numbers", "measure"],
"statement": [[1,""]],
"items": [[1, ""]],
"proof": [
[0, "it gives the intuitive proof , not the formal proof"],
[0, "it claims that small section of the area has certain form (r^2 *

d\theta) without justification (also incorrectly), then
proceeds to integrate and changes the result once again to land on

the correct result in the end. Just integrate 2*sqrt(r^2 - t^2)
dt from -r to r without polar coordinates and stuff , you can do
this!"],

[1, ""]]
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