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Abstract

We present Magnushammer: a novel approach to premise selection — a crucial task
in automated theorem proving. Traditionally, symbolic methods that rely on domain
knowledge and engineering effort are applied to this task. In contrast, this work
demonstrates that contrastive training with the transformer architecture can achieve
higher-quality retrieval of relevant premises, without the domain knowledge or
feature engineering overhead. Magnushammer outperforms the most advanced
and widely used automation tool in interactive theorem proving: Sledgehammer.
On the PISA and miniF2F benchmarks Magnushammer achieves 59.5% (against
38.3%) and 34.0% (against 20.9%) success rates, respectively. By combining
Magnushammer with a language-model-based theorem prover, we further improve
the state-of-the-art proof success rate from 57.0% to 71.0% on the PISA benchmark.
Moreover, we develop and open source a novel, large dataset for premise selection.

1 Introduction and background

Modern mathematics development is gradual: it feeds upon a huge body of already established
knowledge and constantly adds to it. Proving a mathematical statement requires retrieval of facts
from the knowledge base that can advance the proof. In automated reasoning literature, this problem
is known as premise selection, and many tools have been developed to tackle it [1} 23} 21} [3]].

Proof assistants (aka interactive theorem provers, or ITPs) such as Isabelle [31]], Lean [[10], or Coq [4]],
are software tools designed to assist the development of formal proofs. They provide expressive
language for the formalization of mathematical statements and proofs while verifying them formally.

In Isabelle, theorems are proved sequentially: an initial proof state is obtained after the theorem is
stated, and the proof state changes when the user provides a valid proof step (see Appendix [A.T]for
an example). Proof states contain information about the already established facts and the remaining
goals to prove. Proof steps consist of factics, which are optionally parametrized by premises. Tactics
are theorem-proving procedures and can complete some proofs in one step provided with relevant
premises. However, finding these premises is difficult: one needs to select a handful of relevant facts
from the current proof context, which typically contains tens of thousands of them.
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(a) A call to Sledgehammer triggers the following
sequence of steps: First, available facts are filtered
based on their similarity to the conjecture. Then, the
conjecture together with the selected facts (usually
a few hundred in number) are translated to simpler
logic used by the external provers (E, SPASS, etc.).
Then, such problems are fed into each ATP sepa-
rately. Finally, the premises used in the successful
ATP proofs are used to reconstruct a proof inside
Isabelle using its native methods.
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(b) Given a proof state, we first retrieve the most
relevant premises according to the cosine similar-
ity of their embeddings with the proof state embed-
ding (SELECT). We then re-rank these with a model
that encodes each proof state and premise pair, out-
putting a relevance score (RERANK). The bulk of the
architecture is a shared transformer model, in orange.

Figure 1: Overview of Sledgehammer (a) and Magnushammer (b).

Sledgehammer [32, 5] is a powerful automated reasoning tool for Isabelle. It belongs to a broader
class of tools known as hammers, which integrate automated theorem provers (ATPs) into proof
assistants to automate the process of constructing proofs. Sledgehammer has become an indispensable
tool for Isabelle practitioners [32]. It allows for closing low-level gaps between subsequent high-level
steps of proof without the need to memorize entire lemma libraries.

Sledgehammer is designed to first pre-select a number of relevant facts heuristically, translate them
together with a conjecture to simpler logic, and try to prove the conjecture using strong, external
ATPs (like E [40] or Vampire [22]). If successful, these provers generate complete proofs. They are,
however, not trusted by Isabelle. Instead, the facts used in them are extracted and used to produce a
proof inside Isabelle using its native methods. Up to this last step, known as proof reconstruction,
Sledgehammer is essentially used as a premise selection tool. See Figure [Ia]depicting this process.

In this study, we provide a novel, generic, data-driven, transformer-based [45]] premise selection
tool: Magnushammer. In Section [2] we describe its architecture; in Section [3] we characterize the
dataset extracted from Isabelle libraries for training it; finally, in Section 4} we demonstrate that
Magnushammer achieves substantially better proving performance compared to Sledgehammer.

2 Magnushammer

The core idea of Magnushammer is to carry out premise retrieval in two stages: SELECT and
RERANK. In the SELECT stage, it performs fast retrieval of the most relevant premises located in the
neighbourhood of the current proof state in the common embedding space. In the RERANK stage,
the retrieved premises are re-ranked with a more precise (but slower) scoring method that has access
to the tokens of the proof state and premises. This hierarchical approach, which closely follows
[29] and [16], is scalable to large formal libraries containing hundreds of thousands of facts. The
Magnushammer’s architecture is depicted in Figure[Tb|and outlined in Algorithm 2] (in Appendix [C).

SELECT leverages representation similarity and is based on batch-contrastive training [2, 13141 37]. Tt
embeds premises and proof states into a common latent space and uses cosine similarity to determine
their relevance. During inference, it requires only one pass of a neural network to compute the proof
state embedding and dot product with cached premise embeddings. SELECT is hence fast and scalable



to large sets of premises. In our experiments, there are between 30K and 50K premises in a typical
proof state context, from which we select Kg = 1024 most relevant ones.

RERANK scores the relevance of the K g selected premises for the current proof state by analyzing the
(proof_state, premise) pairs. RERANK is trained to output the probability of the premise being
relevant to the proof_state. The K g premises retrieved by SELECT are re-ranked with respect to
these probabilities, and the final list comprises of the top K r premises (we set Kr = Kg). Having
both the premise and the proof state in a single input allows RERANK to be more accurate. However,
at the same time, it is much slower, as each pair must be scored individually.

Training Magnushammer shares a transformer backbone with specialized linear projections on top
(see Figure[Ib). The backbone is pre-trained with a language modeling task on the GitHub and
arXiv subsets of the Pile dataset [11]. Then, we train Magnushammer alternating between SELECT’s
and RERANK’s objectives, using data consisting of (proof_state, premise) pairs extracted with a
procedure described in Section [3] Appendix [B]provides complete details of the training procedure.

SELECT is trained contrastively with a modified InfoNCE loss [44] using batches consisting of N
proof states, IV positive premises (one for each proof state), and additional M negative premises
sampled from available facts that are not ground truth premises for any of the selected proof states.
(This gives N — 1 + M negatives per proof state in one batch; we typically use M = 3N.)

RERANK is trained using a standard binary classification objective.  For each positive
(proof_state, premise) pair in the dataset, we construct 15 negatives from the most likely false
positives returned by SELECT. Specifically, all the premises M that are facts that were never used as
a premise for proof_state, are first chosen. Then, the top 1024 of M according to SELECT are
selected, and 15 are sampled from them to construct negative training pairs.

Evaluation in Isabelle Given a proof state, a list of the £ most relevant premises P is retrieved. We
construct proof steps consisting of a tactic ¢ and a subset of premises S C P. Such proof steps are
executed in parallel, with a timeout of 2 seconds. The evaluation is successful if any of these proof
steps completes the proof. For .S, we pick the top 4 of P, where ¢’s are consecutive powers of 2 up to
210 or 0 for tactics that do not accept premises. More details, including the set of tactics used, are
presented in Appendix [C] An example of a proof with tactics and premises is given in Appendix [A.3]

3 Datasets

We created and releasecf] a comprehensive dataset of textual representations for Isabelle’s proof
states and premises.To the best of our knowledge, this is the first high-quality dataset of this kind for
Isabelle, and also the largest premise selection dataset overall. We used the two largest collections of
Isabelle theories to create the dataset: the Archive of Formal Proofs|and the Isabelle Standard library.

For every proof step in every proof from these collections, we extracted the preceding proof state and
the premises used in the proof step; this was turned into (proof_state, premise) pairs constituting
training data points. We call this the HUMAN PROOFS LIBRARY (HPL) dataset. In addition, we
used Sledgehammer to generate proofs that are different from the human ones by using potentially
alternative premises. We refer to this as the SH partition, and its union with HPL is the MACHINE-
AUGMENTED PROOFS LIBRARY (MAPL) dataset. Our datasets have 2 distinguishing features:

1. The human-originating dataset is augmented by alternatives generated with Sledgehammer,
which results in a significantly larger and more diverse dataset. This also decreases the
probability of sampling false negatives while training contrastively: a negative example
(proof_state, premise) may in fact be positive, but we just have not seen an alternative
proof using premise. Generating multiple alternative proofs partially remedies this problem.

2. Both proof_states and premises are represented as “high-level” Isabelle’s text instead of
“low-level” logical formalism (like in [[1]]). This makes the data more suitable for language
models, avoids feature engineering, and facilitates cross-proof-assistant pre-training [8].

3The data is available on HuggingFace:
https://huggingface.co/datasets/Simontwice/premise_selection_in_isabelle,
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Table 1: Proof rates on the PISA benchmark. On the Table 2: Proof rates on the miniF2F benchmark. On
single-step task, Magnushammer outperforms both the single-step task, Magnushammer outperforms both
Sledgehammer and BM25 by a wide margin. On the Sledgehammer and a variant with additional heuristics
multi-step task, Magnushammer combined with Thor [19]. On the multi-step task, Thor + Magnushammer
achieves the state-of-the-art proof rate of 71.0%. obtains competitive results, significantly outperforming
Thor + Sledgehammer.

Setting  Method Pro(o (;; ; ate Valid  Test
Method (%) (%)

TF-IDF 31.8
k) BM25 30.6 o Sledgehammer 9.9 10.4
2 OpenAl embed. 36.1 2 Sledgehammer + heuristics 18.0 20.9
@ Sledgehammer 38.3 ‘% Magnushammer 33.6 34.0
Magnushammer 595 Thor + Sledgehammer 283 299
= LISA 33.2 % Thor + Sledgehammer + auto  37.3  35.2
E Thor 57.0 g  Thor + Magnushammer 36.9 37.3
8 Thor + Magnushammer 71.0 DSP [19] 439 393

4 Experiments

We evaluate Magnushammer on two established theorem-proving benchmarks using two different
settings specified below: single- and multi-step settings. Our main result is that Magnushammer
outperforms Sledgehammer by a large margin and, combined with Thor [18]], sets a new state of the
art on the PISA benchmark (71.0% from 57.0%). Evaluation details and ablations can be found in
Appendices [C|and [D} respectively. In particular, Figure [C.5]shows how Magnushammer outperforms
Sledgehammer across a broad spectrum of computational budgets.

Benchmarks and evaluation metrics For evaluation, we use PISA [17]] and miniF2F [51]] bench-
marks. PISA contains problems randomly selected from the Archive of Formal Proofs; we use the
same 1000 problems as Jiang et al. [[18]] for our evaluations. miniF2F consists of 488 high-school
competition-level problems, split into validation and test set, each with 244 problem:s.

To evaluate the performance, we measure proof success rate: the percentage of successful proofs. A
proof is successful if it is formally verified by Isabelle.

Single-step setting In this setting, we check if a theorem can be proven in a single step by applying
premises retrieved by the evaluated premise selection method. To this end, we generate |7 | x | K|
proof steps by combining each tactic ¢ € 7 with top k& € K premises from a ranking provided
by Magnushammer, where T is a prescribed set of tactics and K = {1,2,4,8,...,1024}. Such
constructed proof steps are then executed in Isabelle. (See Algorithm [3|and Appendix [C]for details.)

In the single-step setting, Magnushammer outperforms Sledgehammer by a wide margin on both
PISA (59.5% vs. 38.3%) and miniF2F (34.0% vs. 20.9%). Additionally, on PISA, Magnushammer
outperforms TF-IDF and BM25: text-based, non-trainable retrieval methods [38]] which are strong
baselines in common retrieval benchmarks [43]]. This suggests that Magnushammer is able to learn
more than just superficial text similarity.

Interestingly, retrieval based on the generic OpenAl embeddings [27] (specifically: text-embedding-
ada-002) yields reasonable performance comparable to Sledgehammer. This confirms the potential of
neural premise selection to replace traditional symbolic methods. There is, however, a large gap to
match Magnushammer. This shows that contrastive fine-tuning on our dataset provides non-trivial
gains and supports our hypothesis that Magnushammer learns more than just mere textual similarity.

Multi-step setting Neural theorem provers often utilize language models to generate full proof steps,
following the approach proposed in [35]. This allows for the creation of more complex, multi-step
proofs. The proof generation involves sampling a proof step from the language model, verifying it,
and repeating this process until the proof is closed or the computational budget is exceeded. The
best-first search algorithm is often used to explore the most promising proof steps.

Thor [18] extends the capabilities of neural theorem provers by allowing them to generate proof steps
utilizing an external premise selector — specifically, Sledgehammer. We modify Thor by replacing
Sledgehammer with Magnushammer, which constituted Thor + Magnushammer architecture. (See



Appendix [C.3|for details). Thor + Magnushammer establishes a new state of the art on the PISA
benchmark (71.0% vs. 57.0%). On miniF2F, our method also significantly outperforms Thor and
achieves results competitive with the current state of the art.

It is important to note that other theorem-proving approaches in the multi-step section of Table 2]
require much larger language models: for Thor it is 700M non-embedding parameters; DSP (Draft,
Sketch, and Prove) by Jiang et al. [19] uses Minerva model [25] with 62B parameters. Moreover,
these other approaches rely on ideas orthogonal to premise selection. Specifically, Thor + auto
[48] proposes a variation of Thor, involving expert iteration on auto-formalized data. DSP involves
creating a high-level outline of a proof and uses Sledgehammer to solve the low-level subproblems.
We hypothesize that both methods would perform even better when combined with Magnushammer.

5 Related work

Existing works on premise selection use classical machine learning like Bayesian and kernel meth-
ods [23}[1]], -NN [6]], decision trees [33} 26} 34], and more recently, deep learning. Effective deep
learning approaches often leverage the structure of mathematical expressions using graph neural
networks [47, 30, [13]. Han et al. [14] use contrastive learning in informal premise selection. Concur-
rently to our work Yang et al. [[50] develop a premise selection method for Lean similar to our SELECT
method. Our work uses the transformer architecture [45]], which is highly scalable and capable of
producing powerful representations of text data. Unlike traditional hammers [32} 20} [12} 9]], our
method does not depend on external ATPs and requires little domain-specific knowledge.

Pre-trained transformer language models have been applied to various aspects of theorem proving,
including tactic prediction [49], proof step search [35} 24], and autoformalization [48],[19]. The
application of generative language models to premise selection has been limited, as the length of
the possible premises often greatly exceeds the context of several thousand tokens that the models
are designed to handle. Thor [18] circumvents the difficulty of premise selection by invoking
Sledgehammer. In contrast, Magnushammer retrieves rather than generates to overcome the context
length limitation. Therefore it can be used in tandem with other models (its combination with Thor is
demonstrated in Section[d).

Batch-contrastive learning is widely used in speech [44], text [[16], image [[7] and image-text [137]]
representation learning. These methods have proven effective despite the possibility of false negatives
occurring in contrastive batches [39]. The SELECT phase of our premise selection model relies on
in-batch negative examples to train the retriever, similar to HOList [3] and Contriever [16]]. Like
HOList, we mine additional negatives, which we found crucial for performance. The RERANK stage
closely resembles [29], but instead of using BM25, we jointly train retrieval and re-ranking, utilizing
premises retrieved by SELECT as hard negatives for RERANK training.

6 Conclusion

In this paper, we introduced Magnushammer, a neural premise selection method that is transferable
across proof assistants. We evaluate it in the Isabelle environment, showing that it outperforms the
popular tool Sledgehammer on two benchmarks: PISA and miniF2F. Magnushammer can be plugged
into automated reasoning systems as the premise selection component, as showcased with Thor. With
its ease of adoption and high performance even with a low computational budget, Magnushammer
paves the way for the firmer integration of deep-learning-powered tools into proof assistants.
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Appendix

A Isabelle environment

This section contains visual examples of proofs in Isabelle and provides some configuration details of
the environment.

A.1 Visualization of the Isabelle environment

Figure[A T|shows an example theorem and its proof, as seen in Isabelle’s most popular IDE, jEdit.
The theorem comes from an entry to the Archive of Formal Proofs — Fun With Functions [28]]. Tt
states that any mapping f from the set of natural numbers to itself that satisfies f(f(n)) < f(n+1)
must be the identity function. The proof starts with a simple induction and then refines the result
to arrive at the thesis. This problem was included in Terence Tao’s booklet Solving Mathematical
Problems [42]].

theorem identityl: fixes f :: "nat = nat"
assumes fff: "An. f(f(n)) < f(Suc(n))"
shows "f(n) = n"
proof -
{ fix m n have key: "n < m = n < f(m)"
proof(induct n arbitrary: m)
case O show ?case by simp
next
case (Suc n)
hence "m # 0" by simp
then obtain k where [simp]: "m = Suc k" by (metis not@ implies Suc)
have "n < f(k)" using Suc by simp
hence "n < f(f(k))" using Suc by simp
also have "... < f(m)" using fff by simp
finally show ?case by simp
ged }
hence "An. n < f(n)" by simp
hence "An. f(n) < f(Suc n)" by(metis fff order le less trans)
hence "f(n) < n+l" by (metis fff 1ift Suc mono less iff[of f] Suc_eq plusl)
with «<n < f(n)> show "f n = n" by arith
ged

Figure A.1: An example theorem in Isabelle. The statement is highlighted in the orange frame and
the body of the proof is in the green frame. In this proof, most of the lines contain two consecutive
steps: the first formulates a new proposition, and the second proves it. See a detailed analysis of the
line 8 of the proof in Figure[A.2]below.

proof (state)
this:
m = Suc k
goal (1 subgoal):
1. Anm. (Am. n<m= n< fm)

= Such<m= Sucn<fm

|
by (metis |not@ implies_Suc)

|not0_implies_5uc:“n # 0 = Im. n = Suc m"\

then obtain k where [simp]: "m = Suc kﬂ

Figure A.2: The line is broken down into two steps: the first one (green frame) includes the proposition
(since m is natural and positive, it must have a predecessor k) and the second (blue frame) proves
it using the tactic metis with premise notO_implies_Suc, that states that a nonnegative natural
number is a successor of some other natural number. The used premise is a fact which is already
defined in the lemma library. The proof state resulting from the first step is in the yellow frame. The
full premise statement is highlighted in pink.
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A.2 Alternative proof step generation with Sledgehammer

This section describes how to generate alternative proof steps using Sledgehammer which we do to
obtain datasets described in Section 3] First, we find all intermediate propositions within the proof
(they can be nested) and try to replace the proof of the proposition with a Sledgehammer step. If
successful, we record such a step in the dataset and proceed with both the original and the alternative
proof. Figure[A3|provides a visual example of the aforementioned propositions.

proof -
{|fix m n have key: "n < m = n < f(m)"|
proof(induct n arbitrary: m)
case 0 show ?case by simp
next
case (Suc n)
hence "m # 0" by simp

thenlobtain k where [simp]: "m = Suc K“|by (metis not® implies Suc)
have "n < f(k)" using Suc by simp
hence "n < f(f(k))" using Suc by simp
also have "... < f(m)" using fff by simp
finally show ?case by simp
qed }

hence "An. n < f(n)" by simp

hence "An. f(n) < f(Suc n)" by(metis fff order_le less trans)
hence ["f(n) < n+1"|by (metis fff lift_Suc_mono_less_iff[of f] Suc_eq plusl)
with <n < f(n)> show "f n = n" by arith

Figure A.3: Example intermediate propositions highlighted in red. Note: not all propositions were
highlighted.

A.3 Example of a proof with tactics requiring premises

Figure contains a multi-step proof of the irrationality of v/2 written in Isabelle. The proof
contains multiple usages of tactics that require premises.

lemma "sqrt 2 € Q"
proof
assume "sqgrt 2 € Q"
then obtain a b::int where "sqrt 2 = a/b" "coprime a b" "b # 0"
by (metis Rats_cases' less_irrefl)
then have c: "2 = a”2 / b"2"
by (smt (z3) of_int_power power_divide real_ sqrt_pow2)
then have "b"2 # 0" by fastforce
then have *: "2*b"2 = a”2"
by (smt (verit, ccfv_SIG) c comm_semiring class.distrib
eq_divide_eq numeral(l) mult_cancel_rightl numeral_ Bit0
numeral plus_numeral of_ int add of_int power
of _int power eq of int cancel_ iff one_plus_numeral)
then have "even a"
by (smt (z3) even_power oddE)
then obtain c::int where "a=2*c" by blast
with * have "b"2 = 2*c”2" by auto
then have "even b"
by (smt (z3) even_power oddE)
with (coprime a b» (even a» (even b» show False by fastforce
qed

Figure A.4: A proof of v/2 ¢ Q [18, Figure 1]. The steps containing metis, smt, fastforce,
blast, auto, fastforce are examples of steps using premises. For instance, one such proof step
isby (metis Rats_cases’ less_irrefl). This step invokes metis and provides two premises
as arguments, namely Rats_cases’ and less_irrefl.
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A4 Sledgehammer setup

We set up Sledgehammer in Isabelle 2021-1, following the configuration used by [18]. We run
Sledgehammer using different sets of settings and calculate the total proof rate by taking the union of
problems solved by each run. The Sledgehammer timeout is set to default 30 seconds. We use only
on-machine automated theorem provers (same as Isabelle environment), so external provers used by
Sledgehammer are the following: Z3, SPASS, Vampire, CVC4, and E.

In our calculation of the Sledgehammer computation budget we assume S = 10 *CPU cores.” We run
our experiments on machines with 96 CPU cores, making the assumption realistic. Moreover, we
emphasize that the performance gap between Magnushammer and Sledgehammer is large enough that
altering the value of .S, e.g., to an unrealistic level S = 1, would not qualitatively change conclusions.

B Details of Magnushammer training

We train Magnushammer in the two separate tasks alternating update steps as presented in Algorithm([T]
Note that the backbone of the architecture is shared between SELECT and RERANK; such multi-task
training is potentially more effective than having two separate models.

Algorithm 1 Magnushammer training.

Require:
0 > initial trainable parameters
D > premise dataset
T > interval for updating rerank dataset
Dyerank < recompute_negatives_for_rerank(f, D)
step =10
: while step < num_train_steps do
batch_select « D.sample()
0 + train_step(f, batch_select)
batch_rerank < Dyerank.sample()
6 + train_step(f, batch_rerank)
step ¢~ step+1
if step mod 7' = 0 then
Dyerank < recompute_negatives_for_rerank(d, D)

YRIINHERN T

—_

B.1 SELECT stage
SELECT stage is trained using the InfoNCE loss [44] defined as:
exp (s(q, ky) /7
Llak)=- SCLESTES ,
exp (s (g, k) /7) + 2= exp (s (¢, ki) /7)

where ¢ is a query (a proof state), k. is a positive premise (a ground truth from the dataset), k; are
negative premises. We define s as cosine similarity between proof state and premise embeddings;
7 > 0 is a non-trainable temperature parameter.

Calculation of the negative premises for SELECT is costly, thus for efficiency reasons we recalculate
the top 1024 premises every 1" = 1000 steps in the recompute_negatives_for_rerank function,
as outlined in the Algorithm ]

B.2 RERANK stage

Premise retrieval task can be cast as binary classification, trying to determine if a given pair
(proof_state, premise) is relevant. Applying classification to each pair is computationally infeasi-
ble, however, it could be used to re-rank a small set of premises retrieved by SELECT. Namely, we
use the following cross-entropy loss:

L=— Z log score(p) — Z log(1 — score(p)),

peEP pEN
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where score(p) is the output of the RERANK part of the model (see "Sigmoid" in Figure for
a given p = (proof_state, premise) pair. Typically, we sample a batch of 16 positive pairs P
from the dataset. For each such pair (proof_state, premise) 15 negatives are constructed from
the most likely false positives returned by SELECT. Specifically, negative premises M, which are
facts that were never used as a premise for proof_state, are first chosen. Then, the top 1024 of M
according to SELECT are selected, and 15 are sampled from them to construct negative pairs, which
are included in \V.

B.3 Model architecture

We use a decoder-only transformer architecture, following the setup from [46] and using rotary
position embedding by [41]], a variation of relative positional encoding. The feedforward dimension
in the transformer block is set to 4 x D where D denotes embedding dimension, and the number of
attention heads is H = D/64. Our 38M model has L = 12 layers and an embedding dimension of
D = 512. The larger 86M model consists of L = 12 layers and has D = 768. For all the models,
we use the original GPT-2 tokenizer [36]. The results presented in the main body of the paper were
obtained using the larger, 86 M-parameter model.

In SELECT, we append a specialized token at the end of the sequence to compute the embedding
for a proof state and linearly project its embedding. Premises are embedded analogously. Similarly
to [37] that train separate projections for images and captions, we train separate proof state and
premise projections and share the transformer backbone (see Figure[Tb). Analogously for RERANK,
we compute the relevance score by taking the embedding of the last token and then projecting it to a
scalar value.

B.4 Hyperparameter setup

We performed the following hyperparameter sweeps. We note that we have not observed significant
differences between obtained results.

* Learning rate: {le—4,2e—4,3e—4, 5e—4}, chosen: 2e—4

* Dropout: {0.0,0.05,0.1,0.2}, chosen: 0.1

» Weight decay: {0.02,0.05,0.1}, chosen: 0.02

* Batch size N in SELECT: {128,256, 512}, chosen: 256

* Number of negatives M in SELECT: {0, 256, 768, 1536}, chosen: 768

¢ Temperature for InfoNCE loss in SELECT: {0.05,0.07,0.2, 1}, chosen: 0.07

* Batch size for RERANK: {16, 32,64}, chosen 64

» Number of negatives per proof state M in RERANK: {7, 15}, chosen: 15.

B.5 Pre-training on language modeling

Pre-training has been shown to dramatically increase the capabilities and performance of decoder-only
models on tasks other than language modeling [[15]. Motivated by that, we pre-train our models on
GitHub and arXiv subsets of the Pile [1 l]E] The models are trained for 1M steps, with a context
length of 2048. Global batch size is set to 32 sequences giving a total number of 65536 tokens per
batch. Dropout is disabled, and weight decay is set to 0.02. The learning rate increases linearly from
0 to 0.0003 for the first 10000 steps, and then the cosine schedule is applied to decrease its value
gradually.

B.6 Fine-tuning for downstream tasks

We train Magnushammer by taking a pre-trained language model, removing its language modeling
head, and attaching three linear projection heads — one projection for proof state embedding, another

*We follow here the methodology of Polu and Sutskever [35] who verified that generative pre-training
substantially improves proving performance in MetaMath and that pre-training on mathematical data leads to
better performance compared to pre-training on generic text from the web.
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one for premise embedding, and the last one for producing relevance score for RERANK, as depicted
in Figure [Tb| and described in Section [B.3] For the proof step generation task, we fine-tune our
language models by applying the algorithm used to train Thor [18].

B.7 Hardware

We gratefully acknowledge that our research was supported with Cloud TPUs from Google’s TPU
Research Cloud (TRC). We use TPU virtual machines from the Google Cloud Platform (GCP) for
all stages: pre-training, fine-tuning, and evaluation. Each TPU virtual machine has 8 TPU v3 cores,
96 CPU cores, and over 300GB of RAM. TPU v3 cores have around 16GB of memory each. The
Isabelle environment is set to have access to 32 CPU cores.

C Details of Magnushammer evaluation

Algorithm [2] shows the two-stage premise selection method of Magnushammer.

Algorithm [3|outlines the evaluation method described in Section[d To generate the proof steps there,
we use the following tactics: smt, metis, auto, simp, blast, meson, force, eval, presburger,
linarith.

Algorithm 2 Premise selection with Magnushammer.

Require:
proof_state > proof state to retrieve premises for
premises > database of available premises
Ks,Kg > number of premises to retrieve with SELECT and RERANK, respectively
state_embedding < get_embeddings(proof_state) > SELECT stage starts
premises_embeddings < get_embeddings(premises)
Cache(premises_embeddings)
sim_scores = state_embedding - premises_embeddings
selected = premises[argsort(—sim_scores)[: Kg]]
batch = |] > RERANK stage starts
for premise in selected do

batch.append((proof_state, premise))

rerank_scores < get_rerank_scores(batch)
top_premises = selected[argsort(—rerank_scores)[: Kyl
return top_premises

TReY XN AERNT

—_ =

Algorithm 3 Magnushammer evaluation in ITP environment.

Require:

theorem > theorem to prove
premsel_model > Magnushammer’s premise selection model
Kg > number of premises to retrieve with SELECT
Kr > number of premises to retrieve with RERANK
premises > available premises
top_k_premises_to_try > list with the number of top premises to generate steps with
tactics_to_try > list of tactics to generate steps with
env > ITP environment (e.g., Isabelle)

1: proof_state + init_problem(env,theorem) > initialize problem

2: top_premises < premsel_model(proof_state, premises, Kg, Kg) [ get top premises

3: steps =[] > generate proof steps combining of tactics and top k premises

4: for k in top_k_premises_to_try do

5: top_k_premises < top_premises|[: k]

6: new_steps < generate_steps(tactics_to_try, top_k_premises)

7: steps.extend(new_steps)

8: solved « try_steps(env, steps) b evaluate generated proof steps in the ITP’s environment

9: return solved
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Figure C.5: Proof success rate for varying computational budget for Magnushammer, Sledgehammer,
and BM25. Magnushammer shows remarkable scalability.

C.1 Computational budget

For our main results (Section EP, we allocate the computational budget of 1000 as follows: apart
from the powers of two from 27 to 21, we also try the following k values: [48,96, 192], which in
total gives 14 values. With each of these k values, 36 tactics are used with timeout 7' = 2, yielding
C ~ 1000.

For the ablation studies, we only use powers of two from 2° to
which gives C ~ 800.

210 and the same set of 36 tactics,

C.2 Scaling computational budget

Figure[C.5|shows how the quality of premise selection methods varies with the computational budget
available during evaluation. Notably, Magnushammer outperforms Sledgehammer even with very
limited computational resources, and it scales well, particularly within the medium budget range.

For Magnushammer and BM25, we use Algorithm [3]in various configurations (i.e., settings of 7~
and K). We start with one tactic, 7 = {smt}, and K = [27], which yields C = 2 (recall that ' = 2
s). We then gradually add more tactics to 7 and more values to K. The final setup uses |7 | = 36
and K containing all powers of 2, from 2° up to 219, which yields C' ~ 800. Details are provided in
Appendix [C] For Sledgehammer, we scale the timeout parameter 7" up to 80 s. We use models trained
on the MAPL dataset and evaluate them with a computational budget of 800.

C.3 Thor + Magnushammer

To generate more complex proofs we combine Thor [18]] with Magnushammer as introduced in
multi-step setting in Section 4}

Firstly, we follow the procedure described in [18] to pre-process training data and fine-tune our pre-
trained language model for the proof generation task (pre-training details can be found in Appendix
[B.5). During the evaluation, when the language model generates the <hammer> token, we call our
method instead of Sledgehammer. More specifically, we use an augmented Algorithm [3]that returns
the proof states resulting from applying the steps (instead of returning binary information on whether
any of the steps closed the proof). We then pick at most s = 2 states among these and add them to the
BFS queue.

We assign the same computational budget as proposed in Thor, with the only difference being that
each proof_step has a timeout limit of 2 s (instead of 10 s), which we found to perform better in
our setup. The search is terminated if and only if one of the following scenarios happens: (1) a valid
proof has been found for the theorem; (2) the language model is queried 300 times; (3) a wall-time
timeout of 500 s has been reached (assuming parallel execution of Magnushammer steps); (4) the
queue is empty but the theorem is not proved. We keep the same maximum length of the queue equal
to 32.
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BM2S5 baselines. models perform better.

Figure D.6: Impacts of the training data quantity and the model parameters on the proof rate. The
vertical axis is the proof rate in percentage. In Subfigure [D.6a] the horizontal axis is the fraction of
training dataset used and in Subfigure [D.6B]it is the number of parameters in the model.

D Ablations

D.1 Impact of training data

We study how the amount and type of data impact the proof success rate by comparing HPL and
MAPL datasets. For this comparison, we used models with 38M non-embedding parameters and a
computational budget of 800.

Dataset size Our method is data-efficient: see Figure We observe that Magnushammer
fine-tuned on only 0.1% of MAPL - equivalent to approximately 4K samples — is already able to
outperform Sledgehammer. This indicates that when starting from a pre-trained model, Magnusham-
mer is a promising approach for addressing premise selection in theorem-proving environments with
limited training data. The effect of pre-training diminishes as the amount of training data increases.

Dataset type Fine-tuning on MAPL or HPL leads to subtle differences (56.3% vs. 54.0% when the
whole datasets are used). This outcome may be attributed to the impact of model pre-training and
the fact that the HPL dataset is rich enough to obtain good performance on the PISA benchmark (as
observed in the previous paragraph). We speculate that the bigger MAPL dataset might be essential
for future harder benchmarks and scaling up the model size.

Model size To study how the performance of our method depends on the model size, we vary the
number of layers L and embedding dimension D. A positive correlation between the model size and
the proof rate is shown in Figure[D.6b] We observe that even a tiny model with 920K parameters
(L = 1, D = 256) outperforms Sledgehammer (40.7% vs. 38.3%). We also note the benefit of
pre-training and that scaling the number of layers is more beneficial than scaling the embedding
dimension. Details, including the configuration of each model, are in Appendix [B.3]

Impact of re-ranking We find that the SELECT-only method, i.e., Magnushammer without the
RERANK phase, already significantly outperforms Sledgehammer. Tested on the 38M model, it
achieves a 54.2% proof rate comparable to 56.3% obtained by Magnushammer. SELECT-only mode
is a computationally appealing alternative, as it only needs a single forward pass to embed the current
proof state (the setting used recently by Yang et al. [50].) Premise embeddings can be pre-computed
and cached, allowing inference on the CPU without the need for GPU or TPU accelerators.
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