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Abstract

Large pre-trained neural Language Models (LLMs) that can effectively utilize
enormous amounts of unlabeled textual data have recently changed the whole field
of Natural Language Processing. By utilizing prompting techniques enabled by
the in-context learning capabilities, LLMs have been shown to perform on par
with dedicated models trained for downstream tasks. One such a task is numerical
reasoning and, in particular, the ability to conduct basic arithmetic operations. The
question we wish to answer is whether the basic properties of arithmetic operations,
such as the commutative property, hold in the space of LLM prompts — does asking
the LLM to compute 13 + 37 vs 37 4 13 result, on average, in the same outcome?
In contrast to most previous works, which reported Accuracy only, we take a
closer look (MAE, Pearson’s R) at the error distribution to better understand the
performance with regard to prompt perturbations and scaling laws.

1 Introduction and Related Work

Large Language Models (LLMs) [Brown et al.l 2020, |Zhang et al.| 2022, Black et al., 2022| Touvron
et al.,|2023a, |OpenAl, 2023 are able to solve not only classical NLP tasks, such as summarization
(when conditioned on a long document and a “TL;DR:” token) but also to perform advanced reason-
ing [Qiao et al.,[2023} |Huang and Changl 2023, including mathematical reasoning [[Lu et al., 2023,
Imani et al.,|2023|]. Previous works tackled several known issues of the arithmetic reasoning: perfor-
mance drop when the number of symbols increases [Qian et al., 2023|], handling of the out-of-range
numbers [Kim et al.| [2021]] or the unclear impact of tokenization [Lee et al., 2023]]. While recent
developments, such as the Toolformer [Schick et al.,2023]], enable precise arithmetic computations
via the direct usage of a calculator API, there is still a lot of open questions regarding the native
mathematical capabilities of LLMs. [Lu et al.| [2022]] have shown that the order in which the samples
are provided to the model in the prompt can make a difference between state-of-the-art and random
guess performance for NLP tasks such as sentiment classification or textual entailment. Inspired
by those observations, we wish to establish whether a similar phenomenon affects the numerical
reasoning of LLMs — or, phrasing it differently, whether the commutative property holds in the space
of LLM prompts. We also examine the associative and distributive properties not only reporting the
frequency of correct predictions but also trying to measure the errors quantitatively.

2 Experimental Setup

In our experiments, we explore the OPT model family [Zhang et al.l [2022] of Transformer-based
language models trained with the next-token prediction task (causal language modeling) on large
corpora, including the Pile [Gao et al.l[2020]] and the Pushshift.io [Baumgartner et al.,|2020] datasets.
We test the following variants (differing in the number of trainable parameters): 2.7B, 6.7B, 13B,
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30B, and 66B. Furthermore, we report results of the 175B parameter GPTE| davinci-002 model,
accessed via the OpenAl API. We utilize greedy decoding (without beam search) and generate in a
deterministic manner, i.e., without output sampling. [Razeghi et al.|[2022] have previously shown
that the number of occurrences of a particular number in the data used to train the LLM affects the
performance. For example, numbers that correspond to important historical events (e.g., 1939) or
ones used in common phrases (e.g., 24 hours) are over-represented. Therefore, in our experiments,
whenever we compare different prompt variants, we start by sampling a random set of numbers that
we utilize in creating an artificial test-set (2000 examples). We explore four arithmetic tasks: 2D+
(addition of three 2-digit integers), 3D+ (addition of two 3-digit integers), 2D x (multiplication of
two 2-digit integers), and 1DC (composite operation on three digits, i.e., a X b 4 c). For the n-digit
operation, we sample uniformly from the [0, 10™) range. The size of the prompt (number of examples)
equals three and we use the purely numerical prompt (white spaces inserted for readability), i.e.:

| 2+9+3=14 \n 7+1+12=20 \n 6+1+67=74 \n 59+12+76= ]

Zhou et al.|[2022]] have previously shown that within the range in which we operate, such a simple
prompt formulation achieves results comparable to advanced techniques such as scratchpad [Nye
et al.,|2021]] or Chain-of-thought [Wei et al.,|2023]] approaches while making it straightforward to
formulate concepts such as “associative” or “commutative”. We will refer to the first part of the
prompt (e.g., 2+ 9+ 3 = 14; 7+ 1+ 12 = 20) as template and the second one (e.g., 59+ 12+ 76 =)
as query. We measure the model performance by reporting not only Accuracy (percentage of correct
predictions) but also the Mean Absolute Error (MAE) and Pearson’s correlation coefficient (R)
between correct results and model predictions.

In our experiments, we always trim the output at the first generated newline symbol. On average, the
output is parsable to an integer value for over 99% of the inputs after a single post-processing step
that removes commas and points (models sometimes output a thousands separator, e.g., 2, 537). The
remaining ones (e.g., “12 24)” when the correct answer is “36” or “9*8=72" with “17” being the
correct answer) are excluded from the evaluation, as they would bias both MAE and Pearson’s R. We
acknowledge that this may overestimate the models’ Accuracy.
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Figure 1: Commutative property — the cumulative results for the three prompt variants (see
Section reported on the 2D++, 3D+, and 2D x tasks. For the description of the metrics, see
Section ?For readability, we normalize the MAE values (normalized MAE) by the error of the
smallest (2.7B) model (see Table |§| in the Appendix.)

2.1 Commutative property

In order to explore the commutative property, we compare three variants of prompts for the 2D+,
3D+, and 2D x tasks. The aspect that varies is the ordering of the left-side numbers in each example
(we average over ascending and descending ordering):

* Rand — random ordering of numbers both in the template and in the query (1 + 17+ 5 =
23;34+7+2=17)
e Sort —all numbers sorted (1 + 5+ 17=23;24+3+7=7)

'https://learn.microsoft.com/en-us/semantic-kernel/prompt-engineering/1lm-models
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* RevSort — all numbers sorted, but reversed in the query (1 +5+17=23;74+3+2=7)

Considering that LLMs do not differentiate between numbers and ordinary strings, we consider
lexicographic (1 < 11 < 3) vs numerical (1 < 3 < 11) ordering.

Table 1: Cumulative (averaged over model sizes and tasks) results for all three properties (see
Section[2), highlighting the differences between prompt variants. The best-scoring prompt variant
within a particular property is highlighted independently for each metric.

Property Variant Metric

Accuracy? | Pearson’s RT MAE|

Rand 20.62 0.72 398.59

Commutative Sort 20.52 0.73 395.45

RevSort 20.88 0.70 426.71

NOP 18.27 0.82 22.50

Associative PS1 14.05 0.78 25.74
PS2 16.87 0.79 29.69

PAR 21.40 0.69 22.21

Distributive DIS 23.45 0.69 19.40
SWP 22.83 0.63 23.35

2.2 Associative and Distributive properties

To check whether the associative property holds, we explore the 2D-++- task. For consistency, we do
not insert parentheses into the template and consider three query variants:

¢ NOP — no parentheses (3+ 4+ 31 =7)
 PS1 — parentheses rearranged to enclose the first and the second numbers ((344) + 31 = 7)
* PS2 - parentheses rearranged to enclose the second and the third numbers (34 (44 31) = ?7)

We validate the distributive property by looking at the modified 1DC task. The prompt variants we
consider are:

* PAR - both template and query with the parentheses formulation (2 x (8 + 4) = 24;4 x
(64+4)="7)

* DIS — both template and query with the distributed formulation ((2 x 8) + (2 x 4) =
24;(4x6)+(4x1)="7)

* SWP — different template/query format, averaged over PAR;DIS and DIS;PAR (2 x (8 +4) =
24;(4x6)+(dx1)=7and (2 x8)+ (2x4)=24;4x (6+4)="7)

3 Results

Commutative property We start by analyzing the type of ordering used to sort the numbers in
the prompt. Averaging over model size and type of prompt, the difference in Accuracy between
lexicographic and numerical ordering is below 0.5%. Therefore, we consider it insignificant, and
from this point onward, we will report results for the numerical ordering. Figure[I|presents the results
with respect to the model size, and the aggregated statistics are reported in Table 1| Surprisingly, the
RevSort variant of the prompt achieves the highest average Accuracy, but the differences are subtle.
However, it results in the highest average MAE and the lowest Pearson’s R.

The largest (175B) parameter model that we consider solves the 3D+ and 2D++ addition tasks
for every prompt variant with an almost perfect Accuracy of 99. For the 2D X task, despite the
Accuracy of roughly 70, the MAE evaluates to a single digit, and Pearson’s R evaluates to 0.99,
indicating a very strong linear correlation. Prompted with the challenging, purely numerical prompt,
the second-largest 66B parameter returns the correct result only for less than 10% of inputs. Smaller
models achieve even lower Accuracy. Those results are surprising if we compare them with the MAE
and Pearson’s R. For example, the 66B model with the Rand prompt variant scores 4.45/18.6/0.87
Accuracy/MAE/Pearson’s R on the 2D++- task. This suggests that while the model does not predict
the correct result exactly, the output is, on average, relatively close (see Table[6]in the Appendix).



Inspired by those observations, we take a closer look at the number of tokens that a particular model
outputs for a given input. In Table[2} we report the average Accuracy for each model with respect to
the number of tokens and their corresponding frequency in the output. Outputs with 3 or more tokens
constituted less than 0.1% of all outputs. Therefore, for clarity, we decided to exclude them from
the analysis. One can observe a clear tendency — the number of correct predictions is much higher if
the model outputs only a single token. The smaller the model, the more significant the difference.
Furthermore, for models from the OPT family (2.7B—66B ones) that use the same vocabulary, we
can notice that the frequency of single-token outputs does not correlate with the model’s size. It is,
however, significantly smaller than the frequency of single-token outputs for the largest 175B GPT
model that uses a different vocabulary — this may be a further indication that not only the number of
trainable parameters but also the tokenization method affects the performance.

Table 2: Accuracy for the commutative property experiments (averaged over tasks and prompt
variants) with respect to the number of tokens and their corresponding frequency in the generated
output.

Model Accuracy (Frequency %)
2.7B 6.7B 13B 30B 66B 175B
1 3.3 (48.3%) | 17.4 (46.8%) | 13.2 (49.4%) | 21.8 (46.9%) | 36.2 (48.9%) | 99.0 (61.3%)
2 03(51.7%) | 1.5(53.2%) | 1.7 (50.6%)| 2.5(53.0%)| 8.6 (51.1%) |77.2 (38.7%)

#Tokens

Associative property Based on all three metrics in Table[I} we notice that the NOP query variant
(without parentheses) performs best. The differences, especially in terms of Accuracy, are more
significant than for the commutative property. This is the case even for the largest 175B parameter
model that achieved 99.2/75.8/95.8 Accuracy for the NOP/PS1/PS2 query variants. In order to
understand the differences, we measured the average number of token required to encode the query.
The results are as follows: 6/7/6 for the NOP/PS1/PS2 query variants. Those results suggest that the
model is mostly able to incorporate the parentheses (Accuracy of 99.2 vs 95.8), but only if they do
not influence the tokenization. We leave the question of whether the inclusion of parentheses in the
template would make a difference for future work.

Distributive property Based on our findings (Table[I]), one can observe that swapping the tem-
plate/query format (SWP) hurts the performance — it leads to the largest MAE and lowest Pearson’s R.
The Accuracy is higher than for the PAR variant. However, this can be explained by the significantly
lower (93.8%) than the average (99.6%) frequency of parsable outcomes from the 175B model — for
both PAR and DIS prompt variants, the output was parsable in 100% of the cases. Surprisingly, the
Pearson’s R for the PAR prompt variant (Figure [3|in the Appendix) was actually higher for the 66B
model (0.750) than for the 175B model (0.745), despite both generating 100% of parsable outcomes.

4 Additional Experiments

Next generation LLMs Since the release of the OPT model family, the next generation of LLMs
such as Pythia [Biderman et al.,|2023]], LLaMA [Touvron et al.,2023a], LLAMA 2 [Touvron et al.,
2023b] or Mistral [Jiang et al.,|2023|] have been publicly released. They incorporate various improve-
ments developed by the community — concerning the architecture (e.g., Rotary Embeddings [Su et al.}
2021]| or Grouped-Query Attention [Ainslie et al.,2023]]), the training process (e.g., 1T training tokens
for the 7B LLaMA vs 180B for OPT models) and the tokenization (e.g., LLaMA tokenizer splitting
all numbers into individual digits), outperforming larger models on standard benchmarks. To establish
whether the improvements also carry to numerical reasoning, we repeat our experiments (see Table[3)
with the 7B and 13B variants of LLaMA and LLAMA 2. Overall, the results are inferior to the 175B
GPT model but much better than even the largest 66B OPT model. For the commutative experiments,
the differences are small, but the same tendency holds, i.e., sorting improves the Accuracy, and
reverse-sorting hurts it. The ability to handle parentheses (PS1 and PS2) is an emergent one, with
clear differences between the 7B and 13B variants. The relatively low numbers on the distributive
experiments show that LLMs still struggle with composite operations, even when handling single
digits.

https://github.com/openai/tiktoken
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Table 3: Accuracy for the 7B and 13B variants of LLaMA and LLAMA 2, reported for each prompt
variant and all three arithmetic properties considered. For the commutative property, we average over
the 3D+, 2D++4 and 2D X tasks.

Commutative Associative Distributive
Rand | Sort | RevSort NOP PS1 PS2 PAR DIS SWP

LLaMA 7B | 57.5 | 599 56.4 53.6 3.8 6.2 | 250 | 24.6 | 257
13B| 71.0 | 72.9 68.8 739 | 359 | 424 | 324 | 31.8 | 31.7
7B | 69.2 | 709 69.1 70.6 | 346 | 52.6 | 30.7 | 26.8 | 31.3
LLAMA 2
13B| 783 | 774 77.2 82.6 | 578 | 714 | 348 | 39.1 | 32.0

Fine-tuning for arithmetic reasoning So far, we have been exploring the general-purpose language
models. To establish how the task-specific models handle the prompt perturbations, we have fine-tuned
the 2.7B and 6.7B OPT models to perform arithmetic reasoning. We focused on the commutative
experiments, fine-tuning the models on the artificially created training data that consisted of uniformly
mixed equations (corresponding to the 3D+, 2D+-+-, and 2D x tasks) and Rand prompt formulation.
We used the LoRA [Hu et al.l 2022]] procedure with the default parameters from the PEFT [Mangrulkar
et al., |2022] library and trained for 5,000 steps with a linearly decreasing learning rate of le-4, an
effective batch of 256 and using the AdamW [Loshchilov and Hutter, 2019] optimizer.

Table 4: Accuracy of the 2.7B and 6.7B OPT models fine-tuned for arithmetic reasoning.

2D++ 2D x 3D+
Rand | Sort | RevSort | Rand | Sort | RevSort | Rand | Sort | RevSort
OPT2.7BFT | 983 | 97.6 98.2 772 | 77.7 77.2 53.6 | 55.0 53.8
OPT 6.7B FT | 100.0 | 100.0 100.0 93.0 | 924 92.6 95.8 | 95.6 954

In Table 4] we report Accuracy on the same test-sets used in previous experiments. Both models
are able to solve the 2D+ task (almost) perfectly but the 6.7B variant performs significantly better
on the 3D+ and 2D X tasks. The differences between the Rand/Sort/RevSort prompt variants are
negligible, with the Sort variant (to a certain degree) positively affecting the performance of the
smaller (2.7B) model.

5 Conclusion

In this work, we explored the problem of establishing whether the basic arithmetic properties hold in
the space of Language Model prompts by querying a number of LLMs with several prompt variants
and measuring the statistical differences in the output. Our initial results are indefinite — while the
number ordering does not influence the largest GPT model, the inclusion of the parentheses may
influence the tokenization and, thus, performance. The OPT models perform significantly worse,
which makes it difficult to pinpoint the influence of every factor. The performance of the recent
LLaMA models is closer to the GPT model. It shows that the field is quickly developing, but LLMs
still struggle with composite tasks.

We acknowledge the limitations of our work: we limit the analysis to particular families of LLMs
(OPT and LLaMA), we arbitrarily fix the size of the prompt and its formulation, we operate in a
limited range (numbers not greater than 10%), and we do not explore all of the possible template/query
combinations.
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A Appendix
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Figure 2: Associative property — the cumulative results on the 2D+-+ task for the three query
variants, see Section 2.2}
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Figure 3: Distributive property — the cumulative results on the 1DC task for the three prompt
variants, see Section 2.2}

In Figure 2] we plot the results (Section 3) of the associative experiments and in Figure [3] of the
distributive experiments. In Table[5] we include the MAE values of the 2.7B OPT model that were
used to compute the normalized MAE values in Figure[I] In Table[6] we present a sample of the
model outputs for the Rand prompt variant on the 3D+ task; see Section [3]

Table 5: MAE values of the smallest 2.7B OPT model computed for the tasks and prompt variants
considered in Section 211

Task Variant
Rand Sort | RevSort
2D++ 32.1 31.1 33.9
2D x 1690.4 | 16419 | 1775.3
3D+ 287.6 | 268.2 304.1

Table 6: Sample of model predictions.

Query | Correct Result | 66B OPT Output | 30B OPT Output | 6.7B OPT Output

318 +491 = 809 769 741 769
154 +932 = 1086 1158 1662 1234
951 + 504 = 1455 1047 1154 1053
2654572 = 837 872 852 854
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