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Abstract

Language agents, which use a large language model (LLM) capable of in-context
learning to interact with an external environment, have emerged as a promising
approach to control tasks. We present a language-agent approach that offers
state-of-the-art performance in formal theorem-proving. Our method, COPRA,
uses a high-capacity, black-box LLM (GPT-4) as part of a policy for a stateful
backtracking search. During the search, the policy can select proof tactics and
retrieve lemmas and definitions from an external database. Each selected tactic is
executed in the underlying proof framework, and the execution feedback is used
to build the prompt for the next policy invocation. The search also tracks selected
information from its history and uses it to reduce hallucinations and unnecessary
LLM queries. We evaluate COPRA on the miniF2F benchmark for Lean and a
set of Coq tasks from the Compcert project. On these benchmarks, COPRA is
significantly better than one-shot invocations of GPT-4, as well as state-of-the-art
models fine-tuned on proof data, at finding correct proofs quickly.

1 Introduction

Automatically proving formal theorems (Newell et al., 1957) is a longstanding challenge in computer
science. Autoregressive language models (Polu & Sutskever, 2020; Han et al., 2021; Yang et al.,
2023) have recently emerged as an effective approach to this problem.

A weakness of this method is that it does not model the interaction between the model and the
underlying proof framework. The application of a tactic is an action that changes the state of the proof
and the interpretation of future tactics. By ignoring these game-like dynamics, autoregressive models
miss out on a valuable source of feedback and end up being more susceptible to hallucinations.

In this paper, we show that the nascent paradigm of large-language-model (LLM) agents (Yao et al.,
2022; Wang et al., 2023; Shinn et al., 2023) can help address this weakness. Here, one uses an LLM
as a agent that interacts with an external environment. Information gathered through interaction is
used to update the LLM’s prompt, eliciting new agent behavior because of in-context learning.

Our approach, called COPRA1 (Figure 1), uses an off-the-shelf, high-capacity LLM (GPT-4 (OpenAI,
2023)) as part of a policy in that interacts with a proof environment like Coq or Lean. At each time
step, the policy consumes a textual prompt and chooses to use an available tactic, or backtrack, or
retrieve relevant lemmas and definitions from an external corpus. When the policy selects a tactic, we
“execute” it using the underlying proof assistant. The feedback from the execution is used to construct
a new prompt for the policy, and the process repeats.

1COPRA is an acronym for “In-context Prover Agent”.
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Figure 1: An overview of COPRA. The system implements a policy that interacts with a proof
environment (Coq or Lean). Internally, a COPRA policy consists of an LLM (GPT-4), a stack-
based backtracking search, a retrieval mechanism, a dictionary tracking past failures, and a prompt
serialization protocol that constructs LLM prompts using the stack and environment feedback and
parse LLM outputs into actions.

We have integrated COPRA with both the Coq and the Lean environments. We evaluate the system
using the miniF2F Zheng et al. (2021) benchmark for competition-level mathematical reasoning in
Lean and a set of Coq proof tasks (Sanchez-Stern et al., 2020) from the Compcert (Leroy, 2009)
project on verified compilation. Using a new metric called prove-at-k-inferences, we show that
COPRA can converge to correct proofs faster than competing approaches, including the state-of-the-
art models (Yang et al., 2023; Sanchez-Stern et al., 2020) trained on formal proof data. We also show
that when COPRA fails, it fails quicker than the baseline methods.

1.1 Problem Formulation

COPRA is based on a view of automatic theorem-proving as a control problem. Like prior work
on reinforcement learning (RL) for proof synthesis (Wu et al., 2021), we view a theorem-prover
as a policy that interacts with a stateful proof environment (e.g., Lean) and model the interaction
between the policy and the environment as a deterministic Markov Decision Process (MDP). We
depart from prior RL-based work for theorem-proving by imposing a partial order on MDP states,
allowing rewards to have a textual component, and allowing history-dependent policies.

Now we describe the different components of our proof MDP

States. Let an obligation be a pair (g, h), where g is a goal and h a hypothesis. A state of the MDP
is either a special symbol called error or a set O = {o1, . . . , ok} of obligations oi. The MDP has a
unique initial state oin with a single obligation (gin , hin), where the goal gin and the hypothesis hin

are extracted from the user-provided theorem that we are trying to prove. Its unique final state QED is
the empty obligation set.

Following Sanchez-Stern et al. (2020), we define a partial order ⊑ over states that defines when a
state is “at least as hard” than another and use it to avoid actions that do not lead to progress in the
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proof. Formally, for states O1 and O2 with O1 ̸= error and O2 ̸= error , O1 ⊑ O2 iff

∀ oi = (gi, hi) ∈ O1. ∃ok = (gk, hk) ∈ O2. gk = gi ∧ (hk → hi).

Intuitively, O1 ⊑ O2 if for every obligation in O1, there is a stronger obligation in O2. We assume
we have an efficient symbolic procedure that can check this relationship for any pair of states. The
procedure is sound, meaning that if it reports O1 ⊑ O2, the relationship actually holds. However, it
is incomplete, i.e., it may not detect all relationships of the form O1 ⊑ O2.

Actions and Transitions. The actions in our MDP are the proof environment’s tactics. The transition
function T (O, a) determines the result of applying an action a to a state O. When a is a tactic, we
assume the underlying proof environment to return a state O′ that results from applying a to O. If a
is a “bad” tactic, then O′ equals error ; otherwise, O′ is a new set of obligations. We assume that our
agent can evaluate T (O, a) for any state O and action a. While this assumption is unacceptable in
many MDP problems, it is reasonable in the theorem-proving setting.

Rewards. As usual, we assume a reward function R(O, a) that evaluates an action a at a state O.
Historically, such functions are scalar-valued; however, because we use LLMs as policies, we allow
rewards to also include rich textual feedback from the proof environment. Concretely, we consider
rewards of the form R(O, a) = (r̃, w), where: (1) r̃ is a very high positive value if T (O, a) = QED,
a negative value if T (O, a) = error , and 0 otherwise, and (2) w is the feedback from the proof
environment when a is executed from O.

2 The COPRA Agent
COPRA(O)

1 PUSH(st , O)
2 ρ← RETRIEVE(O)
3 for j ← 1 to k
4 do p← PROMPTIFY(st ,Bad(O), ρ, r)
5 a ∼ PARSEACTION(LLM(p))
6 O′ ← T (O, a), r ← R(O, a)
7 if O′ = QED
8 then terminate successfully
9 else if O′ = error or

∃O′′ ∈ st . O′′ ⊑ O′

10 then add a to Bad(O)
11 else COPRA(O′)
12 POP(st)

Figure 2: The search procedure in COPRA. T is the envi-
ronment’s transition function and R is the reward function.
st is a stack, initialized to be empty. Bad(O) is a set of ac-
tions, initialized to ∅, that are known to be bad at O. LLM is
an LLM, PROMPTIFY generates a prompt, PARSEACTION
parses the output of the LLM into an action (repeatedly
querying the LLM in case there are formatting errors in its
output), and RETRIEVE gathers relevant lemmas and defi-
nitions from an external source. The procedure is initially
called with argument Oin .

A COPRA policy has access to an LLM
(in practice, GPT-4) and performs a
depth-first search. During the search, it
records information about failed actions.
It also uses the ⊑ relation over states to
checks that it is making progress on the
proof.

Figure 2 shows pseudocode for such a
policy. The policy maintains a stack of
MDP states and a “failure dictionary”
Bad that maps a state to a set of actions
that are known to be “unproductive” at
the state. At each search step, the al-
gorithm pushes the current state on the
stack and retrieves external lemmas and
definitions relevant to the state. After
this, it repeatedly serializes the stack
and Bad(O) into a prompt and feeds it
to the LLM. The LLM’s output is parsed
into an action, and the agent executes it
in the environment.

One outcome of the action could be that
the agent arrives at QED. Alternatively, the new state could be an error or represent obligations that
are at least as hard as what is currently on the stack (for example, this could be because of a cycle in
a tactic). In this case, the agent rejects the new state. Otherwise, it recursively continues the proof
from the new state. After issuing a few queries to the LLM, the agent backtracks.

Prompt Serialization Protocol. The routines PROMPTIFY and PARSEACTION together constitute
the prompt serialization protocol and are critical to the success of the policy. Now we elaborate on
these procedures.

PROMPTIFY carefully places the different pieces of information relevant to the proof in the prompt.
It also includes logic for trimming this information to fit the most relevant parts in the LLM’s context
window. Every prompt has two parts: the “system prompt" and the “agent prompt".
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The agent prompts are synthetically generated using a context-free grammar and contain information
about the state stack (including the current proof state), the textual reward for the previous action,
and the set of actions we know to avoid at the current proof state.

The system prompt describes the rules of engagement for the LLM. It contains a grammar (distinct
from the one for agent prompts) that we expect the LLMs to follow when it proposes a course of action.
The grammar carefully incorporates cases when the response is incomplete because of the LLM’s
token limits. We parse partial responses to extract the next action using the PARSEACTION routine.
PARSEACTION also identifies formatting errors (if any) in the LLM’s responses, possibly communi-
cating with the LLM multiple times until these errors are resolved. Figure 5 (in Appendix A.1) shows
an example back-and-forth between COPRA and LLM via the prompt serialization protocol.

3 Evaluation

Our findings about COPRA are that: (i) the approach can find proofs significantly quicker than the
state-of-the-art finetuning-based baselines, both in terms of number of LLM queries and wall-clock
time; (ii) in problems where all current methods fail, COPRA fails faster; (iii) the use of GPT-4, as
opposed to GPT-3.5, within the agent is essential for success; and (iv) backtracking significantly
improves the system’s performance on harder problems. Now we elaborate on our experimental
methodology and these results.

Implementing COPRA. The details of our implementation are mentioned in Appendix A.2.1.

Figure 3: COPRA vs. REPROVER on the
miniF2F benchmark

Benchmarks. We evaluate our approach on two do-
mains: (i) miniF2F (Zheng et al., 2021), a collection of
244 Lean formalizations of mathematics competition prob-
lems, solved using a range of techniques such as induction,
algebraic manipulation, and contradiction; and (ii) a set of
Coq problems from the CompCert compiler verification
project (Leroy, 2009) that was previously used to evaluate
the PROVERBOT9001 system Sanchez-Stern et al. (2020).

Baselines. We compare with one-shot invocations of GPT-
3.5 and GPT-4 in both the miniF2F and the Compcert do-
mains. We also consider an ablation of COPRA that uses
GPT-3.5 as its LLM and another that does not use back-
tracking. Our fine-tuned baseline for the miniF2F domain
is REPROVER, a state-of-the-art open-source prover that
is part of the Leandojo project (Yang et al., 2023). In the
Compcert domain, we compare with PROVERBOT9001

(Sanchez-Stern et al., 2020), which, while not LLM-based, is the best publicly available model for
Coq. More details about the baselines in Appendix A.2.2.

Figure 4: COPRA vs. PROVERBOT9001
on the Compcert benchmark

Metric: pass@k-inferences. The standard metric for
evaluating theorem-provers is pass@k (Lample et al.,
2022; Yang et al., 2023). However, a key objective of
our research is to discover proofs quickly, with fewer LLM
queries and lower wall-clock time. The pass@k metric
does not evaluate this characteristic as it does not quantify
the number of LLM queries or amount of time needed by
a proof attempt.

To address this concern, we introduce a new metric,
pass@k-inferences, and evaluate COPRA and its competi-
tors using this metric. More details about metric in Ap-
pendix A.2.3.

Results Figure 3 and Figure 4 shows that COPRA out-
performs the fine-tuned baselines for the miniF2F and
CompCert domain respectively. We cover more details
about results and ablation in Appendix A.3.
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A Appendix

A.1 Prompt Serialization Protocol Example

Figure 5 shows the back-and-forth between the agent and LLM via PSP for a given goal.

A.2 Evaluation Details

A.2.1 Implementation Details of COPRA

Our implementation of COPRA has GPT-4 as the underlying LLM and can interact with both the
Lean and the Coq proof environments. Because of the substantial cost of GPT-4 queries, we cap the
number of LLM queries that COPRA can make by 60. To further reduce costs, COPRA first tries to
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Figure 5: The prompt serialization protocol. We highlight the different parts of the prompts to show
how we use the state stack and the textual reward from the environment.

prove its theorems via a single LLM query (one-shot prompting). It only invokes its agent behavior
when the one-shot prompting fails to find a proof.

The “system prompt" in the one-shot approach is slightly different than that for COPRA, containing
instructions to generate a proof in one go rather than step by step. For both COPRA and the one-shot
baselines, the prompt contains a single proof example that clarifies how proofs need to be formatted.
This proof example remains the same for all test cases.

A.2.2 Baseline Details

A challenge with the REPROVER baseline is that like COPRA, it uses a retrieval mechanism. However,
building a comparable retriever for COPRA would require an indexed training corpus on problems
relevant to miniF2F. However, miniF2F is only an evaluation set and does not come with a training
corpus. As a result, for an apples-to-apples comparison, our evaluation on miniF2F turns off COPRA’s
and REPROVER’s retrievers.

In the Compcert domain, we compare with PROVERBOT9001 (Sanchez-Stern et al., 2020), which,
while not LLM-based, is the best publicly available model for Coq. Unlike miniF2F, this benchmark
comes with a large training set as well as a test set, and we use the training set for retrieving relevant
lemmas and definitions. Our retrieval mechanism, in this case, is a simple BM25 search.

For cost reasons, our evaluation for Compcert uses 118 out the 501 theorems used in the original
evaluation of PROVERBOT9001 Sanchez-Stern et al. (2020). For fairness, we include all the 98
theorems proved by PROVERBOT9001 in our subset. The remaining theorems are randomly sampled.

A.2.3 Metric: pass@k-inferences.

The standard metric for evaluating theorem-provers is pass@k (Lample et al., 2022; Yang et al., 2023).
In this metric, a prover is given a budget of k proof attempts; the method is considered successful if
one of these attempts leads to success. However, a key objective of our research is to discover proofs
quickly, with fewer LLM queries and lower wall-clock time. The pass@k metric does not evaluate
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Approach
# Theorems

proved
/# Theorems

%
proved

Avg.
Inferences

in Total

Avg.
Inferences
on Failure

Avg.
Inferences

on Pass

miniF2F Test Dataset
GPT 3.5 Few Shot 7/244 2.8% 1 1 1
GPT 4 Few Shot 26/244 10.6% 1 1 1
COPRA (GPT-3.5) 29/244 11.89% 12.83 14.23 2.45
ReProver 54/244 22.13% 350.7 427.24 81.6
COPRA (GPT-4) 57/244 23.36% 20.94 26.79 1.75

CompCert Test Dataset
GPT 3.5 One-Shot 10/118 8.47% 1 1 1
GPT 4 One-Shot 36/118 30.51% 1 1 1
Proverbot 98/118 83.05% 184.7 256.8 170.0
COPRA 76/118 64.41% 12.9 10.9 16.57

Table 1: Aggregate statistics for COPRA and the baselines on miniF2F and Compcert

Approach Avg. Time In Seconds
Per Proof Per Inference

On Pass On Fail All On Pass On Fail All
ReProver (on CPU) 279.19 618.97 543.78 3.42 1.45 1.55
ReProver (on GPU) 267.94 601.35 520.74 2.06 0.44 0.48
COPRA (GPT-3.5) 39.13 134.26 122.21 15.97 9.43 9.53
COPRA (GPT-4) 30.21 191.73 140.86 17.26 7.16 6.73

Table 2: Average time taken by our approach (COPRA) and ReProver on miniF2F dataset.

this characteristic as it does not quantify the number of LLM queries or amount of time needed by a
proof attempt.

To address this concern, we introduce a new metric, pass@k-inferences, and evaluate COPRA and
its competitors using this metric. Here, we measure the number of correct proofs that a prover can
generate with a budget of k or fewer LLM inference queries. One challenge here is that we want this
metric to be correlated number of correct proofs that the prover produces within a wall-clock time
budget; however, the cost of an inference query is proportional to the number of responses generated
per query. To maintain the correlation between the number of inference queries and wall-clock time,
we restrict each inference on LLM to a single response.

A.3 Results

Figure 3 shows our comparison results for the miniF2F domain. As we see, COPRA outperforms
REPROVER, completing, within just 60 inferences, problems that REPROVER could not solve even
after a thousand inferences. This is remarkable given that COPRA is based on a black-box foundation
model and REPROVER was fine-tuned for at least a week on a dataset derived from Lean’s Mathlib
library. For fairness, we ran REPROVER multiple times with 16, 32, and 64 (default) as the maximum
number of inferences per proof step. We obtained success rates of 15.9%, 20.1%, and 22.13% in the
respective cases and took the best for comparison.

Figure 4 shows a comparison between COPRA and PROVERBOT9001.

We find that COPRA is significantly faster than PROVERBOT9001. Since we put a cap of 60 inferences
on COPRA, it cannot prove all the theorems that PROVERBOT9001 eventually proves. However, as
shown in the figure, COPRA proves many more theorems than PROVERBOT9001 if only 60 inferences
as allowed. Specifically, we prove 77.5% of the proofs found by PROVERBOT9001 in less than 60
steps.

Aggregate statistics for the two approaches, as well as a comparison with the one-shot GPT-3.5 and
GPT-4 baselines, appear in Table 1. It is clear from this data that the language-agent approach offers
a significant advantage over the one-shot approach. For example, COPRA solves more than twice as
many problems as the one-shot GPT-4 baseline, which indicates that it does not just rely on GPT-4
recalling the proof from its memory. Also, the use of GPT-4 as opposed to GPT-3.5 seems essential.
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Approach
# Theorems

proved
/# Theorems

%
proved

miniF2F Test Dataset
COPRA (GPT-4) w/o backtracking 56/244 22.95%
COPRA (GPT-4) 57/244 23.36%

CompCert Test Dataset
COPRA (GPT-4) w/o backtracking 52/118 44.06%
COPRA (GPT-4) 76/118 64.41%

Table 3: Ablation showing the effectiveness of backtracking

theorem algebra_sqineq_at2malt1
(a : R) :
a * (2 - a) ≤ 1 :=
begin

have h : ∀ (x : R), 0 ≤ (1 - x) ^ 2,
from λ x, pow_two_nonneg (1 - x),
calc a * (2 - a)

= 1 - (1 - a) ^ 2 : by ring
... ≤ 1 : sub_le_self _ (h a),

end

Figure 6: A theorem in the ‘algebra’ category that COPRA could prove but REPROVER could not.

We establish the correlation between the number of inferences needed for a proof and wall-clock time
in Table 2. Although the average time per inference is higher for COPRA, COPRA still finds proofs
almost 9x faster than REPROVER. This can explained by the fact that our search is more effective as
it uses 46x fewer inferences than REPROVER. These inference steps not only contain the average
time spent on generating responses from LLM but at times have some contribution corresponding to
the execution of the tactic on the Lean environment itself.

Table 2 also offers data on when the different approaches report failures. Since REPROVER uses a
timeout for all theorems, we also use a timeout of 11 minutes while considering failures in Table 2.
The data indicates that COPRA is comparatively better at giving up when the problem is too hard to
solve. We also note that less time is spent per inference in case of failure for all approaches.

We show the impact of ablating the backtracking feature of COPRA in Table 3. We note that
backtracking has a greater positive impact in the Compcert domain. We hypothesize that this is
because the Compcert problems are more complex and backtracking helps more when the proofs are
longer.

Finally, we offer an analysis of the different categories of miniF2F problems solved by COPRA
and REPROVER in Figure 7. We see that certain kinds of problems, for example, International
Mathematics Olympiad (IMO) problems and theorems that require induction, are difficult for all
approaches. However, Figure 7b shows that COPRA takes fewer steps consistently across various
categories of problems in miniF2F.

From our qualitative analysis, there are certain kinds of problems where the language-agent approach
seems especially helpful. For instance, Figure 6 shows a problem in the ‘algebra’ category that
REPROVER could not solve. More examples of interesting Coq and Lean proofs that COPRA found
appear in the appendix.

A.4 Example Proofs generated For miniF2F

Fig. 8 shows some other interesting proofs generated by our approach on miniF2F dataset.
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(a) Problems solved in different categories (b) Number of inferences in different categories

Figure 7: Breakdown of theorems proved in various categories

A.5 System Prompts For miniF2F

Parts of the ‘system prompt’ used by COPRA for theorem proving in Lean are shown in Fig. 9.

A.6 System Prompts For CompCert

Parts of the ‘system prompt’ used by COPRA for theorem proving in Coq are shown in Fig. 10.

A.7 Example Proofs generated For CompCert

Fig. 11 shows some interesting proofs generated by our approach on the CompCert dataset.
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(a)

theorem
mathd_algebra_246

(a b : R)
(f : R → R)
(h0 : ∀ x, f x = a * x

^4 - b * x^2 + x +
5)

(h2 : f (-3) = 2) :
f 3 = 8 :=
begin

rw h0,
rw h0 at h2,
ring_nf,
linarith,

end

(b)

theorem
mathd_algebra_270

(f : R → R)
(h0 : ∀ x ̸= -2, f x =

1 / (x + 2)) :
f (f 1) = 3/7 :=
begin

have h1 : f 1 = 1
/ (1 + 2),
apply h0,
linarith,
rw h1,
rw h0,
field_simp,
ring,
norm_num,

end

(c)

theorem
mathd_algebra_44

(s t : R)
(h0 : s = 9 - 2 * t)
(h1 : t = 3 * s + 1) :
s = 1 ∧ t = 4 :=
begin

split,
{

rw h0 at h1,
linarith

},
rw h0 at h1,
rw h1 at h0,
linarith,

end

(d)

theorem amc12b_2002_p2
(x : Z)
(h0 : x = 4) :
(3 * x - 2) * (4 * x +

1) - (3 * x - 2)
* (4 * x) + 1 = 11
:=

begin
ring_nf,
rw h0,
ring,

end

(e)

theorem
mathd_algebra_107

(x y : R)
(h0 : x^2 + 8 * x + y

^2 - 6 * y = 0) :
(x + 4)^2 + (y-3)^2 =

5^2 :=
begin

rw pow_two at h0,
rw add_assoc at h0,

rw add_comm (x * x
) (8 * x + y ^ 2)
at h0,
rw add_comm (8 * x
) (y ^ 2) at h0,
rw add_assoc at h0,

rw add_comm (y ^
2) (8 * x + x * x)
at h0,

rw add_assoc at h0,

ring_nf at h0,
rw pow_two,
rw pow_two,
ring_nf,
rw ←add_assoc,
rw h0,
linarith,

end

Figure 8: Some other interesting proofs generated for miniF2F by COPRA. The length of the proofs
generated shows that interaction with the environment helps in fixing the errors encountered while
writing long proofs. These long sequences of rewrites are not easy to synthesize without knowing the
exact verbal reward from the environment which often contains the hint to fix the rewrites.
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You are a proficient formal theorem-proving agent in Lean 3. You can predict
the next proof step given the current proof state. The proof state is
described in the following format:

↪→

↪→

1. All the goals are described under `[GOALS]` keyword. Each goal within
the `[GOALS]` is described under the keyword `[GOAL] i`, where `i` is a
positive integer. For example, `[GOAL] 1`, `[GOAL] 2`, etc.

↪→

↪→

2. Within each `[GOAL] i` keyword, the goal is described as a
human-readable serialized version of the proof state as shown while
running `lean` command. Each goal, might also accompany some hypotheses,
which are described under the keyword `[HYPOTHESES] i`. Each hypothesis
within `[HYPOTHESES]`, starts with the prefix `[HYPOTHESIS]`.

↪→

↪→

↪→

↪→

3. Sometimes `[GOALS]` can have description about the proof state like
`Proof finished`, `There are unfocused goals`, `Not in proof mode`, etc.
The description is described under the keyword `[DESCRIPTION]`.

↪→

↪→

4. Finally, `[STEPS]` keyword is used to describe proof-steps used so far.
Each proof step starts with the prefix `[STEP]`, and is a valid Lean
tactic. For example, `[STEPS][STEP]rw h at h,[STEP]{linarith},`.

↪→

↪→

5. Sometimes, `[INCORRECT STEPS]` keyword optionally used to describe
proof-steps which should NOT be generated. Use this as a hint for not
generating these proof-steps again as they failed previously. For
example, `[INCORRECT STEPS][STEP]apply h,[STEP]rw ←h`.

↪→

↪→

↪→

6. There is also an optional `[LAST STEP]` keyword which describes the
proof-step generated last time. If the proof-step was incorrect, then
it is also followed by error message from Coq environment. For example,
`[LAST STEP]linarith,\n[ERROR MESSAGE]linarith failed to find a
contradiction\nstate:\nx y : ,\nh : x = 3 - 2 * y,\nh : 2 * x - y = 1\n
false`. If the proof-step was correct then it is followed by the
keyword `[SUCCESS]`. For example, `[LAST STEP]linarith,[SUCCESS]`.
Don't generate the last proof-step again if it was NOT successful.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

7. Sometimes there can be errors in the format of the generated response.
This is reported using the keyword `[ERROR]` followed by the error
message. For example, `[ERROR]\nInvalid response:\n'Great! The proof is
complete.', \nStopping Reason: 'stop'.\n Please respond only in the
format specified.[END]`. This means that the response generated by you
was not in the specified format. Please follow the specified format
strictly.

↪→

↪→

↪→

↪→

↪→

↪→

If you think you know the next proof step, then start your response with
`[RUN TACTIC]` followed by the next proof-step which will help in
simplifying the current proof state. For example, `[RUN
TACTIC]induction c,[END]`. Generate exactly ONE proof-step. Multiple
proof steps are more error prone, because you will not get a chance to
see intermediate proof state descriptions. Make sure that the proof
step is valid and compiles correctly in Lean 3.

↪→

↪→

↪→

↪→

↪→

↪→

You can refer to the example conversation to understand the response format
better. It might also contain some similar proof states and their
corresponding proof-steps.

↪→

↪→

Please take a note of the following:
1. Make sure to end all your responses with the keyword `[END]`. Follow the

specified format strictly.↪→

2. While generating `[RUN TACTIC]` keyword, do NOT generate the tactics
mentioned under `[INCORRECT STEPS]`......↪→

..............

Figure 9: Parts of ‘system prompt’ used by COPRA for Lean
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You are a proficient formal theorem-proving agent in Coq. You can predict
the next proof step given the current proof state, relevant definitions,
and some possible useful lemmas/theorems. The proof state is described
in the following format:

↪→

↪→

↪→

1. All the goals are described under `[GOALS]` keyword. Each goal within
the `[GOALS]` is described under the keyword `[GOAL] i`, where `i` is a
positive integer. For example, `[GOAL] 1`, `[GOAL] 2`, etc.

↪→

↪→

2. Within each `[GOAL] i` keyword, the goal is described as a human-readable
serialized version of the proof state as shown while running `coqtop`
command. Each goal, might also accompany some hypotheses, which are
described under the keyword `[HYPOTHESES] i`. Each hypothesis within
`[HYPOTHESES]`, starts with the prefix `[HYPOTHESIS]`. Apart from the
goal and hypothesis, some OPTIONAL keywords like `[DEFINITIONS] i` and
`[THEOREMS] i` are also present which describe the relevant definitions
of symbols used in that goal, and some possible useful theorems or
lemmas which might help in simplifying the goal. Each definition within
`[DEFINITIONS]` starts with the prefix `[DEFINITION]`. Similarly, each
theorem/lemma under `[THEOREMS]` keyword starts with the prefix
`[THEOREM]`. These definitions and theorems can be used to simplify the
goal using the tactics like rewrite, apply, etc. However, it is also
possible that these definitions and theorems are not used at all.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

3. Sometimes `[GOALS]` can have description about the proof state like
`Proof finished`, `There are unfocused goals`, `Not in proof mode`, etc.
The description is described under the keyword `[DESCRIPTION]`.

↪→

↪→

4. Finally, `[STEPS]` keyword is used to describe proof-steps used so far.
Each proof step starts with the prefix `[STEP]`, and is a valid Coq
tactic ending with a `.`. For example, `[STEPS][STEP]intros
a.[STEP]induction a.`.

↪→

↪→

↪→

5. Sometimes, `[INCORRECT STEPS]` keyword optionally used to describe
proof-steps which should NOT be generated. Use this as a hint for not
generating these proof-steps again as they failed previously. For
example, `[INCORRECT STEPS][STEP]apply mul_assoc.[STEP]rewrite <- H.`.

↪→

↪→

↪→

6. There is also an optional `[LAST STEP]` keyword which describes the
proof-step generated last time. If the proof-step was incorrect, then
it is also followed by error message from Coq environment. For example,
`[LAST STEP]reflexivity.[ERROR MESSAGE]Error: In environment\nn :
nat\nUnable to unify "n" with "n + 0".`. If the proof-step was correct
then it is followed by the keyword `[SUCCESS]`. For example, `[LAST
STEP]reflexivity.[SUCCESS]`. Don't generate the last proof-step again
if it was NOT successful.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

7. Sometimes there can be errors in the format of the generated response.
This is reported using the keyword `[ERROR]` followed by the error
message. For example, `[ERROR]\nInvalid response:\n'Great! The proof is
complete.', \nStopping Reason: 'stop'.\n Please respond only in the
format specified.[END]`. This means that the response generated by you
was not in the specified format. Please follow the specified format
strictly.

↪→

↪→

↪→

↪→

↪→

↪→

If you think you know the next proof step, then start your response with
`[RUN TACTIC]` followed by the next proof-step which will help in
simplifying the current proof state. For example, `[RUN TACTIC]destruct
c.[END]`. Generate exactly ONE proof-step. Multiple proof steps are
more error prone, because you will not get a chance to see intermediate
proof state descriptions. Make sure that the proof step is valid and
compiles correctly with Coq.

↪→

↪→

↪→

↪→

↪→

↪→

........................

Figure 10: Parts of ‘system prompt’ used by COPRA for Coq
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(a)
gss :
forall l v m,
(set l v m) l = match l with R

r =>↪→

v | S sl ofs ty =>
Val.load_result

(chunk_of_type ty) v
end.

↪→

↪→

Proof.
intros l v m.
destruct l as [r | s o t].
- unfold set.
destruct (Loc.eq (R r) (R

r)); [reflexivity |
contradiction].

↪→

↪→

- unfold set.
destruct (Loc.eq (S s o t)

(S s o t));
[reflexivity |
contradiction].

↪→

↪→

↪→

Qed.

(b)
eq : forall (p q: loc), {p =

q} + {p <> q}.↪→

Proof.
decide equality.
- apply mreg_eq.
- decide equality.
- decide equality.
apply Pos.eq_dec.
decide equality.
- decide equality.

Qed.

(c)
disjoint_cons_right

:↪→

forall a l1 l2,
disjoint l1 (a ::

l2) -> disjoint
l1 l2.

↪→

↪→

Proof.
intros a l1 l2

H.↪→

unfold
disjoint.↪→

intros x1 x2 H1
H2.↪→

apply H.
assumption.
right.
assumption.

Qed.

(d)
eq_int_type :

forall (x y:
int_type),
{x=y} + {x<>y}.

↪→

↪→

↪→

Proof.
decide

equality.↪→

Qed.

(e)
set_locals_lessdef

: forall e1
e2,
env_lessdef e1
e2 -> forall
il,
env_lessdef
(set_locals il
e1)
(set_locals il
e2).

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Proof.
intros e1 e2 H.
induction il as

[| a il'].↪→

- apply H.
- intros.
apply

set_var_lessdef.↪→

apply IHil'.
apply

Val.lessdef_refl.↪→

Qed.

Figure 11: Some other interesting proofs generated for CompCert by COPRA. We can see that these
proofs are long, and often use ‘apply’ tactic which shows that COPRA can effectively use the retrieved
information to discharge the current proof state.
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