
OpenWebMath: An Open Dataset of High-Quality
Mathematical Web Text

♣Keiran Paster∗, †Marco Dos Santos, ◦Zhangir Azerbayev, ♣Jimmy Ba
♣University of Toronto; Vector Institute for Artificial Intelligence

†University of Cambridge, ◦Princeton University
keirp@cs.toronto.edu, mjad3@cam.ac.uk

Abstract

There is growing evidence that pretraining on high quality, carefully thought-out
tokens such as code or mathematics plays an important role in improving the
reasoning abilities of large language models. For example, Minerva, a PaLM
model finetuned on billions of tokens of mathematical documents from arXiv and
the web, reported dramatically improved performance on problems that require
quantitative reasoning. However, because all known publicly released web datasets
employ preprocessing that does not faithfully preserve mathematical notation, the
benefits of large scale training on quantitive web documents are unavailable to the
research community. We introduce OpenWebMath, an open dataset inspired by
these works containing 14.7B tokens of mathematical webpages from Common
Crawl. We describe in detail our method for extracting text and LATEX content
and removing boilerplate from HTML documents, as well as our methods for
quality filtering and deduplication. Additionally, we run small-scale experiments
by training 1.4B parameter language models on OpenWebMath, showing that
models trained on 14.7B tokens of our dataset surpass the performance of models
trained on over 20x the amount of general language data. We hope that our dataset,
openly released on the Hugging Face Hub, will help spur advances in the reasoning
abilities of large language models.

1 Introduction

Advances in large language models have opened up new opportunities in numerous fields, providing
a transformative shift in our approach to a wide range of complex problems [Brown et al., 2020,
Raffel et al., 2020]. Among these problems, mathematical reasoning has drawn the attention of
several researchers in recent years, becoming both a common benchmark to judge the performance
of large language models and inspiring new approaches to improve their reasoning capabilities in
the hope that they will one day be able to solve complex mathematical problems. One of the biggest
advancements in mathematical reasoning in recent years has been the Minerva model [Lewkowycz
et al., 2022], which achieved state-of-the-art results on quantitative reasoning benchmarks such as
MATH [Hendrycks et al., 2021]. Minerva was trained by finetuning PaLM [Chowdhery et al., 2022]
on a curated dataset consisting of billions of tokens of high quality technical content sourced from
both scientific papers and the web.

Minerva and the datasets used for its training were not released publicly and the current capabilities
of open-source models (e.g., Touvron et al. [2023b,c,a], Geng and Liu [2023], Biderman et al. [2023])
in quantitative reasoning lags behind. We believe that there are important research directions that can
only be enabled through open-access to such models and datasets, such as work on memorization

∗Keiran and Marco created the dataset and Zhangir led model training and evaluation.

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Workshop on MATH-AI.

https://huggingface.co/datasets/open-web-math/open-web-math

Pr
efi

lte
r

La
ng

ua
ge

 ID

M
at

hS
co

re
 F

ilt
er

Pe
rp

le
xi

ty
 F

ilt
er

D
ed

up
lic

at
io

n

M
an

ua
l F

ilt
er

237B
HTML pages

1B 336M 66M 59M 7.8M

14.7B
tokens

6.3M
documents

Figure 1: The pipeline for constructing OpenWebMath involves aggressive filtering so that the final
dataset only contains high quality, English, and mathematical content.

and generalization, reinforcement learning, the development of new reasoning benchmarks, and
advancement in the reasoning capabilities of language models.

In our work, we produce an open alternative to the Math Web Pages dataset used to train Minerva
[Lewkowycz et al., 2022]. We extract documents from Common Crawl2, applying our pipeline to
extract text while preserving mathematical content in the form of LATEX equations. We then filter the
documents, ensuring that only high-quality English mathematical documents are kept. Finally, we
deduplicate the dataset, resulting in 14.7B tokens of high-quality mathematical content suitable for
both pretraining and finetuning large language models. The key contributions of this work are as
follows:

• We publically release OpenWebMath, a dataset of 14.7B tokens of high-quality mathematical
web text. Our dataset can be found at https://huggingface.co/datasets/open-web-math/open-
web-math on the Hugging Face Hub.

• We extensively document our pipeline, sharing our findings with the NLP community. We
open-source the code needed to reproduce our results.

• We analyze the quality of OpenWebMath. First, we analyze the contents of our dataset,
providing statistics on the types of webpages, subjects, and top domains. Then, we train
several language models on our dataset to show that per-token, it is more effective than
existing mathematical pretraining datasets, and is most effective when combined with other
datasets.

2 Building OpenWebMath

2.1 Objectives

Our aim with OpenWebMath is to build a dataset of as many mathematical documents sourced from
the web as possible while preserving the formatting of mathematical content such as LATEX equations
as in Lewkowycz et al. [2022]. For the purposes of this work, we define a mathematical document
as a document containing either core mathematical contents such as theorems, definitions, proofs,
questions and answers, formal mathematics, or interdisciplinary documents featuring mathematical
formulas within fields like physics, chemistry, biology, economics, and finance. We source our
documents from Common Crawl, which is a large open-access crawl of the web containing petabytes
of raw HTML files. Due to the high variance in the quality of documents from Common Crawl, we
additionally use several methods for filtering and boilerplate reduction. Throughout the creation
of OpenWebMath, we iteratively refined these methods to ensure that we do not remove too many
relevant documents, optimizing for high recall whenever possible. Since we expect that OpenWeb-
Math will be used primarily as an additional source of pretraining data for large language models, we
prefer having a small percentage of non-mathematical but high quality documents in the dataset rather
than removing them and potentially losing relevant mathematical content. Finally, due to the limited
number of mathematical data available on the web, we use significantly more manual inspection and
tuning of our processing pipeline than other web-based datasets.

2

https://huggingface.co/datasets/open-web-math/open-web-math
https://huggingface.co/datasets/open-web-math/open-web-math

…As an explicit example, on
Tuesday, our answer for that
day will be $$1 \times 3+2
\times 2+3 \times 1=10$$. This
problem was adopted from a
similar problem given to me by
a …

…As an explicit example, on
Tuesday, our answer for that
day will be. This problem was
adopted from a similar problem
given to me by a …

Has LaTeX Commands: Yes (\times)

remove LaTeX equations

Text Corpus

Classifier Input

Classifier Label

predict if LaTeX
present based on text

has LaTeX Commands?

MathScore Classifier

Figure 2: The MathScore classifier used in filtering OpenWebMath is trained to predict whether a text
has any of the most popular LATEX commands based only on surrounding words. This lets us include
documents on the web that do not include extractable LATEX but still contain technical content.

2.2 Overview of the pipeline

As shown in Figure 1, the processing pipeline for OpenWebMath falls into five stages. First, we
apply a prefilter to all HTML documents in Common Crawl to quickly judge whether they have
mathematical content, skipping those that do not before doing the extensive processing needed to
extract text and equations and remove boilerplate. Second, we extract the text, including mathematical
content, from the HTML documents. Third, we apply language identification filters, perplexity-based
quality filtering, and a mathematical content classifier filter (described in Figure 2). Fourth, we
deduplicate the dataset using SimHash [Manku et al., 2007]. Finally, we manually inspect the
documents gathered in the previous steps and view documents from the most popular domains by
document-count and character-count, removing domains that are not high quality. We describe each
of these steps in detail in Appendix A.

3 Dataset Analysis

Data Composition We measured the distribution of domains in OpenWebMath both by document
and by character count. Table 3 and Table 4 in the appendix show the top twenty most common
domains by document and character count respectively. The most common sources of data tend to be
discussion forums, blog posts, and scientific papers. We find that the distribution of characters in
the dataset is distributed over 131,206 domains, with 46% of the characters appearing in the top 100
domains.

We also used gpt-3.5-turbo (https://platform.openai.com/docs/api-reference) to classify a sample
of documents from OpenWebMath by their subject and document type. Figure 3 shows the results.
The majority of the documents in the dataset are directly related to mathematics, while the rest are
spread out throughout physics, computer science, statistics, chemistry, and economics, with 12% of
documents not falling neatly into any of these categories. The highest proportion of documents are
forum pages, where users ask and answer questions related to mathematical subjects. There is also a
large proportion of educational and reference content. Appendix B describes our methodology for
this analysis in greater detail.

Downstream Performance We ran experiments to find out how our dataset compares to other
language modeling datasets. We compare models trained on OpenWebMath for a single epoch (14.7B
tokens) with models trained for the same number of tokens on The Pile [Gao et al., 2020], a general
langauge modeling dataset, and ProofPile [Azerbayev et al., 2023], a dataset of both formal and
informal mathematics. We also train a 50/50 mixture of ProofPile and OpenWebMath to evaluate the

2https://commoncrawl.org/

3

https://platform.openai.com/docs/api-reference
https://commoncrawl.org/

Forum
40%

Educational

21%
Reference

16%

Paper
12%

Blog

6%

Other

5%

Types of OpenWebMath documents

Mathematics 50%

Physics

17%

Comp Sci
12%

Statistics4%

Chemistry
3%

Economics
2%

Other

12%

Subjects of OpenWebMath documents

Figure 3: Left: The documents in OpenWebMath are sourced from forum posts, educational content,
reference pages, scientific papers, blogs, and more. Most content comes from Q&A forums where
users discuss how to solve problems. Right: The majority of the content in OpenWebMath is related
to mathematics, but a large part is related to other technical subjects like Physics, Computer Science,
Statistics, and more.

Training Dataset GSM8k MATH

Prealgebra Algebra Intermediate
Algebra

Counting &
Probability

Number
Theory Precalculus Geometry

The Pile (14.7B tokens) 2.2032 1.9127 1.9751 1.8420 1.8193 1.9227 1.6847 1.9499
ProofPile (14.7B tokens) 2.2350 1.7370 1.7214 1.5739 1.6462 1.7291 1.4838 1.7229
OpenWebMath (14.7B tokens) 1.9075 1.6285 1.6503 1.5949 1.6002 1.6894 1.4542 1.5748
Mixture (14.7B tokens) 1.8968 1.6055 1.6190 1.5301 1.5719 1.6607 1.4119 1.5599
The Pile (300B tokens; Pythia 1.4B) 1.9430 1.7117 1.7560 1.6358 1.6359 1.7460 1.5191 1.7252

Table 1: We trained 1.4B parameter models for 14.7B tokens on various datasets and measured
their perplexity on different mathematics benchmarks. Both OpenWebMath and a 50/50 mixture
of ProofPile Azerbayev et al. [2023] and OpenWebMath perform well - outperforming Pythia 1.4B
[Biderman et al., 2023] trained on 300B tokens of The Pile [Gao et al., 2020].

performance of OpenWebMath when included in a mixture of other datasets, as would be common in
practice.

We train randomly initialized models with the same architecture as Pythia 1.4B [Biderman et al.,
2023]. We use a batch size of 1M tokens and the same hyperparameters as Pythia otherwise. These
models are evaluated on a collection of mathematics benchmarks which show signal on models of
this size. This includes the subset of level-1 algebra questions from MATH, LILA-multiarith to test
coding ability, and GSM8k and MATH perplexities, which scale more smoothly than accuracies. We
also compare to Pythia 1.4B [Biderman et al., 2023], which was trained on 300B tokens of The Pile
[Gao et al., 2020] with the same architecture.

Table 1 shows the results for our perplexity evaluations. There is a clear performance lead for models
trained with OpenWebMath and the mixture seems to perform best. Despite Pythia being trained
on over 20x the number of tokens, the performance of our models on the perplexity benchmarks far
exceeds its performance, showing the potential of domain-specific models for mathematics. Similarly,
Table 2 in the appendix shows the performance of the models on MATH-Algebra-Easy and LILA-
multiarith [Mishra et al., 2022]. OpenWebMath models outperform models that were not trained on it
by a significant margin.

4

4 Conclusion

In this paper, we describe OpenWebMath, an open dataset of 14.7B high quality mathematical docu-
ments from the web. We extensively document our pipeline, including several novel methodologies
for extracting LATEX formulas, reducing boilerplate, and filtering the dataset. OpenWebMath consists
of high quality Q&A forum posts, educational documents, blogs, and more spread across mathematics,
physics, computer science, and other technical domains. We also train several models on OpenWeb-
Math and other language modeling datasets to compare the downstream performance achievable by
training on our dataset. Notably, we find that models trained on OpenWebMath outperform models
trained on 20x more general-domain tokens in mathematics. We hope that OpenWebMath can lead to
the creation of language models with improved mathematical reasoning capabilities.

Acknowledgements

JB is supported by NSERC Grant [2020-06904], CIFAR AI Chairs program, Google Research Scholar
Program, and Amazon Research Award. KP is supported by an NSERC PGS-D award. Resources
used in preparing this research were provided, in part, by the Province of Ontario, the Government
of Canada through CIFAR, Fujitsu Limited, and companies sponsoring the Vector Institute for
Artificial Intelligence (www.vectorinstitute.ai/partners). Computing resources for model
training were provided by EleutherAI and Brigham Young University. We thank Finn Paster for the
graphic design for the logo. We additionally thank Ziming Chen, Yuhuai Wu, Stella Biderman, Aviya
Skowron, Hailey Schoelkopf, and Sean Welleck for their helpful comments.

References
Alex Andonian, Quentin Anthony, Stella Biderman, Sid Black, Preetham Gali, Leo Gao, Eric

Hallahan, Josh Levy-Kramer, Connor Leahy, Lucas Nestler, Kip Parker, Michael Pieler, Jason
Phang, Shivanshu Purohit, Hailey Schoelkopf, Dashiell Stander, Tri Songz, Curt Tigges, Benjamin
Thérien, Phil Wang, and Samuel Weinbach. GPT-NeoX: Large scale autoregressive language
modeling in PyTorch. GitHub Repo, 9 2023. URL https://www.github.com/eleutherai/
gpt-neox.

Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W Ayers, Dragomir Radev, and
Jeremy Avigad. Proofnet: Autoformalizing and formally proving undergraduate-level mathematics.
arXiv preprint arXiv:2302.12433, 2023.

Adrien Barbaresi. Trafilatura: A Web Scraping Library and Command-Line Tool for Text Discovery
and Extraction. In Proceedings of the Joint Conference of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing: System Demonstrations, pages 122–131. Association for Computational
Linguistics, 2021. URL https://aclanthology.org/2021.acl-demo.15.

Janek Bevendorff, Benno Stein, Matthias Hagen, and Martin Potthast. Elastic ChatNoir: Search
Engine for the ClueWeb and the Common Crawl. In Leif Azzopardi, Allan Hanbury, Gabriella Pasi,
and Benjamin Piwowarski, editors, Advances in Information Retrieval. 40th European Conference
on IR Research (ECIR 2018), Lecture Notes in Computer Science, Berlin Heidelberg New York,
March 2018. Springer.

Janek Bevendorff, Martin Potthast, and Benno Stein. FastWARC: Optimizing Large-Scale Web
Archive Analytics. In Andreas Wagner, Christian Guetl, Michael Granitzer, and Stefan Voigt,
editors, 3rd International Symposium on Open Search Technology (OSSYM 2021). International
Open Search Symposium, October 2021.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien,
Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff,
Aviya Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large
language models across training and scaling. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, International Conference
on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of

5

www.vectorinstitute.ai/partners
https://www.github.com/eleutherai/gpt-neox
https://www.github.com/eleutherai/gpt-neox
https://aclanthology.org/2021.acl-demo.15

Proceedings of Machine Learning Research, pages 2397–2430. PMLR, 2023. URL https:
//proceedings.mlr.press/v202/biderman23a.html.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret
Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Er-
ica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang,
Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern,
Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language model-
ing with pathways. CoRR, abs/2204.02311, 2022. doi: 10.48550/arXiv.2204.02311. URL
https://doi.org/10.48550/arXiv.2204.02311.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Katherine M Collins, Albert Q Jiang, Simon Frieder, Lionel Wong, Miri Zilka, Umang Bhatt, Thomas
Lukasiewicz, Yuhuai Wu, Joshua B Tenenbaum, William Hart, et al. Evaluating language models
for mathematics through interactions. arXiv preprint arXiv:2306.01694, 2023.

István Endrédy and Attila Novák. More effective boilerplate removal-the goldminer algorithm.
Polibits, 48:79–83, 12 2013. doi: 10.17562/PB-48-10.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027, 2020.

Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna Wallach,
Hal Daumé III au2, and Kate Crawford. Datasheets for datasets, 2021.

Xinyang Geng and Hao Liu. Openllama: An open reproduction of llama, May 2023. URL https:
//github.com/openlm-research/open_llama.

Kenneth Heafield. Kenlm: Faster and smaller language model queries. In Proceedings of the sixth
workshop on statistical machine translation, pages 187–197, 2011.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. CoRR,
abs/2103.03874, 2021. URL https://arxiv.org/abs/2103.03874.

6

https://proceedings.mlr.press/v202/biderman23a.html
https://proceedings.mlr.press/v202/biderman23a.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.48550/arXiv.2204.02311
https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama
https://arxiv.org/abs/2103.03874

Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Hérve Jégou, and Tomas Mikolov.
Fasttext.zip: Compressing text classification models. arXiv preprint arXiv:1612.03651, 2016.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in Neural Information Processing Systems,
35:3843–3857, 2022.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harrison Edwards, Bowen Baker, Teddy Lee,
Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. CoRR,
abs/2305.20050, 2023. doi: 10.48550/arXiv.2305.20050. URL https://doi.org/10.48550/
arXiv.2305.20050.

Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. Detecting near-duplicates for web
crawling. In Proceedings of the 16th International Conference on World Wide Web, WWW
’07, page 141–150, New York, NY, USA, 2007. Association for Computing Machinery. ISBN
9781595936547. doi: 10.1145/1242572.1242592. URL https://doi.org/10.1145/1242572.
1242592.

Swaroop Mishra, Matthew Finlayson, Pan Lu, Leonard Tang, Sean Welleck, Chitta Baral, Tanmay
Rajpurohit, Oyvind Tafjord, Ashish Sabharwal, Peter Clark, et al. Lila: A unified benchmark for
mathematical reasoning. arXiv preprint arXiv:2210.17517, 2022.

Chenghao Mou, Chris Ha, Kenneth Enevoldsen, and Peiyuan Liu. Chenghaomou/text-dedup: Refer-
ence snapshot, September 2023. URL https://doi.org/10.5281/zenodo.8364980.

OpenAI. Gpt-4 technical report, 2023.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli,
Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refinedweb
dataset for falcon LLM: outperforming curated corpora with web data, and web data only. CoRR,
abs/2306.01116, 2023. doi: 10.48550/arXiv.2306.01116. URL https://doi.org/10.48550/
arXiv.2306.01116.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393, 2020.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, H. Francis Song,
John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford, Tom Hennigan,
Jacob Menick, Albin Cassirer, Richard Powell, George van den Driessche, Lisa Anne Hendricks,
Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth Dathathri, Saffron
Huang, Jonathan Uesato, John Mellor, Irina Higgins, Antonia Creswell, Nat McAleese, Amy Wu,
Erich Elsen, Siddhant M. Jayakumar, Elena Buchatskaya, David Budden, Esme Sutherland, Karen
Simonyan, Michela Paganini, Laurent Sifre, Lena Martens, Xiang Lorraine Li, Adhiguna Kuncoro,
Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki Lazaridou, Arthur Mensch,
Jean-Baptiste Lespiau, Maria Tsimpoukelli, Nikolai Grigorev, Doug Fritz, Thibault Sottiaux,
Mantas Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama, Cyprien de Masson d’Autume,
Yujia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan Clark, Diego de Las Casas,
Aurelia Guy, Chris Jones, James Bradbury, Matthew J. Johnson, Blake A. Hechtman, Laura
Weidinger, Iason Gabriel, William Isaac, Edward Lockhart, Simon Osindero, Laura Rimell, Chris
Dyer, Oriol Vinyals, Kareem Ayoub, Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Koray
Kavukcuoglu, and Geoffrey Irving. Scaling language models: Methods, analysis & insights from
training gopher. CoRR, abs/2112.11446, 2021. URL https://arxiv.org/abs/2112.11446.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 11 2019. URL https://arxiv.org/abs/1908.
10084.

7

https://doi.org/10.48550/arXiv.2305.20050
https://doi.org/10.48550/arXiv.2305.20050
https://doi.org/10.1145/1242572.1242592
https://doi.org/10.1145/1242572.1242592
https://doi.org/10.5281/zenodo.8364980
https://doi.org/10.48550/arXiv.2306.01116
https://doi.org/10.48550/arXiv.2306.01116
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. CoRR, abs/2302.13971, 2023a. doi: 10.48550/arXiv.2302.13971. URL https://doi.
org/10.48550/arXiv.2302.13971.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023b.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian
Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar
Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann,
Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana
Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor
Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan
Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang,
Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang,
Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic, Sergey
Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models. CoRR,
abs/2307.09288, 2023c. doi: 10.48550/arXiv.2307.09288. URL https://doi.org/10.48550/
arXiv.2307.09288.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep
self-attention distillation for task-agnostic compression of pre-trained transformers, 2020.

Sean Welleck, Jiacheng Liu, Ronan Le Bras, Hannaneh Hajishirzi, Yejin Choi, and Kyunghyun
Cho. Naturalproofs: Mathematical theorem proving in natural language. arXiv preprint
arXiv:2104.01112, 2021.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Conneau, Vishrav Chaudhary, Francisco Guzmán,
Armand Joulin, and Edouard Grave. Ccnet: Extracting high quality monolingual datasets from
web crawl data. arXiv preprint arXiv:1911.00359, 2019.

8

https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288

A OpenWebMath Pipeline

A.1 Prefiltering

Since there are over 200B HTML documents in Common Crawl, applying our processing over each
document would require a significant amount of compute. To improve the efficiency of the pipeline,
we first apply a stack of pre-filters optimized for high recall to reduce the number of documents that
need to be processed. Our first filters check for common mathematical strings as in Lewkowycz et al.
[2022], such as the presence of tex classes, <math> tags, and the word “mathjax”. See Table 8 for
a full list of terms. If none of these terms are present, we search for the presence of the top 100
most-popular LATEX symbols in the text. This is done by first filtering for documents containing a
backslash command using a simple regular expression and then searching specifically for these LATEX
symbols in the plain text from the HTML document. If none of these symbols are found, we run the
plain text through our MathScore classifier (see section A.3.1) and keep documents that exceed a
confidence threshold of 0.8. By tuning these filters and using hierarchical layers of progressively
more accurate but more expensive filters, we were able to reduce the compute needed to process the
dataset by several times while retaining a high recall of relevant documents.

A.2 Text extraction

In contrast with prior works that extract text from Common Crawl such as C4 [Collins et al., 2023],
The Pile [Gao et al., 2020], and RefinedWeb [Penedo et al., 2023], we chose to make a mostly custom
pipeline for extracting the main content from HTML documents. This is because we found that
while other tools get decent performance on average over many documents on the internet, they do
not work optimally on many of the most common sources of mathematical content on the web. We
instead opted to build on top of Resiliparse [Bevendorff et al., 2018, 2021], a fast and efficient library
built in Cython that includes performant tools for parsing HTML pages, processing their DOMs, and
extracting the main content. As shown in Table 5 in the appendix, Resiliparse is significantly more
efficient than alternative libraries such as jusText. Another notable part of our text extraction pipeline
is that we randomize the parameters of the extraction to add diversity to the dataset. This includes
randomizing whether we use a plain text or Markdown format for the documents and randomizing
the amount of boilerplate terms required to trigger a line being removed.

Our text extraction pipeline consists of four stages: LATEX extraction, text extraction, DOM processing,
and line processing.

LATEX Extraction Lewkowycz et al. [2022] employ a relatively simple LATEX extraction pipeline that
extracts equations from <script type="math/latex">, <script type="math/asciimath">,
and <math> blocks with <annotation encoding="application/x-tex"> blocks within them
and replaces these tags with the extracted equations. When we applied these filters to documents
from Common Crawl, we noticed an extremely low number of these tags compared to what was
reported. We suspect that this is due to a difference between the HTML files available within Google
[Lewkowycz et al., 2022] and those available on Common Crawl. The majority of the LATEX on the
internet is written using MathJax, where developers write equations delimited by dollar signs or other
delimiters in their HTML pages and then the included javascript code replaces these equations with
properly rendered LATEX equations within the above script tags when the page is loaded. HTML
documents on Common Crawl do not include the changes to the HTML that result from running

Training Dataset MATH Algebra-Easy MATH Algebra-Easy
maj@16 LILA multiarith

The Pile (14.7B tokens) 2.81% 3.93% 9.77%
ProofPile (14.7B tokens) 2.81% 3.93% 8.04%
OpenWebMath (14.7B tokens) 5.62% 9.55% 16.67%
Mixture (14.7B tokens) 5.06% 10.11% 13.22%

The Pile (300B tokens; Pythia 1.4B) 3.93% 5.62% 21.80%

Table 2: Accuracy on Different Math Domains.

9

This paper concerns the quantity
<img src="https://s0.wp.com/
latex.php?latex=%7BM%28x%29..."
alt="{M(x)}" />, defined as the
length of the longest
subsequence of the numbers from

<math>
 <semantics>
 ...
 <annotation ...>

{\displaystyle \mathrm {MA}
={\frac{f_{O}}{f_{E}}}}

</annotation>
 </semantics>
</math>

Suppose I have a smooth map
[tex]f\colon \mathbb{R}^3
\longrightarrow S^2[/tex]. If I
identify [tex]\mathbb{R}^3[/tex]
with [tex]U_S = S^3 - \
{(0,0,1)\}[/tex] via
stereographic projection

Image Equations Delimited Math Special Tags

Figure 4: LATEX formulas can be embedded in HTML documents in many ways, including in images,
within arbitrary delimiters, and within special tags. Most common text-extraction pipelines do not
extract LATEX code properly.

javascript, requiring that we instead extract the LATEX equations by finding delimiters ourselves. This
is a significant challenge since we need to detect whether the page contains the required MathJax
javascript code, which delimiters were chosen by the user to denote equations, and then match and
extract the equations from the text on the page. See Appendix E for a more detailed discussion.

In order to extract MathJax, we first determine whether the page is importing the MathJax javascript
code by searching for the word MathJax on the page. If it is not found, we additionally search for
common LATEX symbols, and if they are found, we treat the page as though it is running MathJax. We
use regular expressions to search for code that calls the configuration function for MathJax to extract
the delimiters used for equations. We add these delimiters to an extensive list of default delimiters
and treat any content between these delimiters as LATEX equations.

In addition to extracting equations from MathJax, we found several more ways that LATEX is encoded
on the internet. These methods were discovered by filtering small portions of Common Crawl for
documents that contain \frac, one of the most popular LATEX commands, and making sure that our
processing code supports all the different ways that math could be encoded. We found that LATEX on
the internet is encoded in the following ways:

1. equation and align environments.

2. The alttext of elements with special classes like tex.

3. Images from domains like latex.codecogs.com often include equations encoded in the
URL.

4. Special wordpress plugins.

5. <math> tags with <annotation encoding="application/x-tex"> blocks within
them.

6. <math> tags with MathML content. We use a style sheet to convert these equations into
LATEX.

7. MathJax equations encoded in the text of the page.

The relative frequencies of the different ways math is encoded can be found in Table 6 in the appendix.

DOM Processing After extracting the LATEX equations from the HTML, we do several processing
steps on the DOM-tree of the HTML document. This includes removing invisible elements based on
their styles, removing buttons and link clusters, annotating code, tables, and headers, and removing
known problematic elements based on class or ID.

Text Extraction We use the extract_plain_text(main_content=True) method in Resili-
parse [Bevendorff et al., 2018] to extract the main content text from the DOM following several
preprocessing steps to get around common issues with their specific implementation that cause it to
be overly sensitive when removing boilerplate.

Line Processing After extracting the plain text on the page using Resiliparse, we apply our own
processing to remove boilerplate lines based on an iteratively-refined set of common boilerplate
phrases, remove empty headers, and escape dollar signs that are not part of LATEX equations.

10

A.3 Filtering

We apply filtering with the goal of removing non-English documents (since our filters pipeline is
optimized for English), removing documents that are not mathematical, and removing low-quality
documents that would be harmful to train a language model on. We apply the following filters in
order:

1. We use a FastText language identification model [Joulin et al., 2016] to remove documents
that are not in English.

2. We use our MathScore classifier (see section A.3.1) to get a probability that the document is
mathematical. If our previous extraction step found LATEX equations, we keep documents
with a probability of over 0.17. If no LATEX equations were found, we keep documents with
a probability of over 0.8.

3. We use a KenLM language model [Heafield, 2011] trained on ProofPile [Azerbayev et al.,
2023] to get a perplexity score for each document. We remove documents with a perplexity
score of less than 15,000.

A.3.1 Math Score

During our filtering process, we train a model to predict the probability a document is mathematical,
which we call MathScore. We first gather a dataset of hundreds of thousands documents extracted
from our pipeline from an early stage of the project, and label them depending on whether they
contain one of the top-100 most common LATEX commands. We then remove any LATEX code from
the documents and train a classifier to predict whether the documents contain one of these common
LATEX commands. The training process for MathScore is depicted in Figure 2. Since we remove all
LATEX code from the features fed into the model, the model needs to learn the words and phrases most
commonly associated with LATEX content. We use FastText [Joulin et al., 2016] to train this model,
and find based on manual inspection that content with a score of under 0.2 is very unlikely to contain
useful mathematical content.

A.4 Deduplication

Due to the large amount of duplicate documents in Common Crawl, we apply a deduplication step to
remove near-duplicate documents. We use the SimHash implementation from text-dedup [Mou et al.,
2023] to deduplicate the dataset using a threshold of 0.7. We find that this threshold is high enough to
remove most duplicate documents even if they have slight differences in their texts.

A.5 Manual Inspection

Finally, we manually inspect the top domains by document count, the top domains by character count,
and the longest documents in the dataset to ensure that the documents are high quality. We remove
domains that are not high quality or clearly not mathematical by adding domains to a blacklist and
adding domain filters such as removing user profile pages, abstract-hosting websites as in Lewkowycz
et al. [2022], and removing search result pages.

B Data Composition Analysis Methodology

In order to get a sense of the types of documents found in the dataset, we analyzed 100,000 randomly
sampled documents. First, we created embeddings of this data using all-MiniLM-L12-v2 [Wang
et al., 2020] in SentenceTransformers [Reimers and Gurevych, 2019]. Then, we clustered these
embeddings using k-Means with k = 128. Finally, we took the five closest documents to each cluster
center and asked gpt-3.5-turbo (https://platform.openai.com/docs/api-reference) to classify each
cluster as Math, Physics, Statistics, Chemistry, Economics, Computer Science, or Other. We then
aggregated these statistics, using the size of each cluster to get an estimate of the final number
of documents in each category. We note several potential issues with this methodology, including
inaccuracies stemming from using an LLM for classification, and the potential that not every document
within a cluster belongs to the predicted category. Figure 3 shows the results of this analysis. The
majority of the documents in the dataset are directly related to mathematics, while the rest are

11

https://platform.openai.com/docs/api-reference

spread out throughout physics, computer science, statistics, chemistry, and economics, with 12% of
documents not falling neatly into any of these categories.

We also used GPT to analyze the types of websites found in OpenWebMath. To do this, we took
a sample of 200 documents and asked gpt-3.5-turbo to classify each as a Forum, Paper, Blog,
Reference, Educational, Reference, or other. We also gave the document URL as a feature, since we
found GPT is often able to judge the topic from the URL alone. We validated our analysis by asking
GPT to do this classification on the top 100 domain names and got similar results. Figure 3 shows the
results. The highest proportion of documents are forum pages, where users ask and answer questions
related to mathematical subjects. There is also a large proportion of educational and reference content.

C Related Work

C.1 Mathematics datasets and benchmarks

Mathematics datasets Over the past couple of years, several datasets of informal mathematics
have been introduced. AMPS, a dataset of informal mathematics, was introduced alongside the
MATH dataset [Hendrycks et al., 2021]. AMPS includes more than 100,000 Khan Academy problems
with step-by-step solutions in LaTeX and over 5 million problems generated using Mathematica
scripts. In total, AMPS contains 23GB of problems and solutions. Another notable example is
NaturalProofs [Welleck et al., 2021], which encompasses 32,000 theorem statements and proofs,
14,000 definitions, and 2,000 other types of pages (e.g. axioms, corollaries) derived from ProofWiki,
the Stacks project and data from mathematics textbooks. Proof-Pile [Azerbayev et al., 2023] is a
dataset of mathematical text that contains more than 14.5GB of informal mathematics texts obtained
from arXiv, Stack Exchange, ProofWiki, Wikipedia, Open source books, and the MATH dataset.
There are also many proprietary datasets for mathematics. WebMath is a large-scale dataset mentioned
by OpenAI researchers [Polu and Sutskever, 2020] that contains a 35B token mix of content from
Github, arXiv, and Math StackExchange, adding up to 35GB of informal mathematics. MathMix is
another OpenAI dataset used to finetune GPT-4 [Lightman et al., 2023] that contains 1B high quality
mathematical tokens containing both natural and synthetic data. The proprietary web dataset used to
train Minerva, called Math Web Pages [Lewkowycz et al., 2022], was compiled by collecting 17.5B
tokens from web pages that contain LATEX code.

Mathematics benchmarks Several popular benchmarks have been used by researchers to assess
the capabilities of language models on both formal and informal mathematics. The MATH dataset
[Hendrycks et al., 2021] is comprised of 12,500 challenging competition problems in informal
language. Each problem is also accompanied by a step-by-step informal proof. Answers are delimited

Domain # Documents % Documents
stackexchange.com 1,136,407 17.99%
physicsforums.com 300,044 4.75%
mathhelpforum.com 170,721 2.70%
socratic.org 133,983 2.12%
mathoverflow.net 120,755 1.91%
gradesaver.com 96,100 1.52%
zbmath.org 91,939 1.46%
wordpress.com 87,876 1.39%
github.io 81,125 1.28%
brilliant.org 68,573 1.09%
gamedev.net 50,560 0.80%
openstudy.com 49,041 0.78%
gmatclub.com 48,812 0.77%
blogspot.com 48,036 0.76%
wikipedia.org 46,606 0.74%
ac.uk 41,342 0.65%
nature.com 37,403 0.59%
aimsciences.org 36,368 0.58%
libretexts.org 32,216 0.51%
readthedocs.io 31,455 0.50%

Table 3: Most Common Domains by Document
Count.

Domain # Characters % Characters
stackexchange.com 4,655,132,784 9.55%
nature.com 1,529,935,838 3.14%
wordpress.com 1,294,166,938 2.66%
physicsforums.com 1,160,137,919 2.38%
github.io 725,689,722 1.49%
zbmath.org 620,019,503 1.27%
wikipedia.org 618,024,754 1.27%
groundai.com 545,214,990 1.12%
blogspot.com 520,392,333 1.07%
mathoverflow.net 499,102,560 1.02%
gmatclub.com 442,611,169 0.91%
gamedev.net 426,478,461 0.88%
ac.uk 402,111,665 0.83%
aimsciences.org 344,716,386 0.71%
mathhelpforum.com 319,215,756 0.65%
deepai.org 313,512,520 0.64%
libretexts.org 282,014,149 0.58%
readthedocs.io 269,816,413 0.55%
tib.eu 199,714,017 0.41%
mit.edu 198,487,362 0.41%

Table 4: Most Common Domains by Character
Count.

12

by the \boxed environment, allowing for easier answer verification. GSM8k [Cobbe et al., 2021]
is another popular multi-step informal mathematics reasoning benchmark. It contains 8,500 grade
school math problems that are intended to be solvable by a bright middle school student. Lewkowycz
et al. [2022] also introduce a benchmark based on OpenCourseWare. OCWCourses includes a set of
272 automatically-verifiable solutions at the undergraduate level, covering chemistry, information
theory, differential equations, special relativity, and more. Lewkowycz et al. [2022] also evaluate
on a subset of MMLU [Hendrycks et al., 2020] called MMLU-STEM, which focuses on science,
technology, engineering, and mathematics.

C.2 Web Data Processing Pipelines

Web data The pretraining of large language models requires large, diverse datasets. Data scraped
from the web is one of the primary sources for such data. However, sources such as Common Crawl,
which contains over 200 billion web pages, are known to have significant amounts of low-quality and
duplicate content, requiring extensive filtering and deduplication to be suitable for training. Prior
works such as C4 [Raffel et al., 2020], RefinedWeb [Penedo et al., 2023], CCNet [Wenzek et al.,
2019], The Pile [Gao et al., 2020], and GPT-3 [Brown et al., 2020] introduce various pipelines for
extracting quality data from Common Crawl for the purposes of language model training. These
pipelines typically consist of three primary steps: text extraction, filtering, and deduplication.

Text extraction Extracting plain text from HTML files is a critical step in the creation of Common
Crawl-based datasets. The easiest way to extract text from Common Crawl documents is to use the
WET corresponding to each webpage, which contains pre-extracted plain text of the webpage. CCNet
and C4 both use Common Crawl’s WET files. However, the text extracted in WET files may contain
too much boilerplate or miss out on important content such as LATEX equations. It is also possible
to extract text directly from the raw HTML found in Common Crawl WARC files. The Pile uses
an open source library called jusText [Endrédy and Novák, 2013] to extract text from HTML while
RefinedWeb uses a library called Trafilatura [Barbaresi, 2021]. These text extraction approaches differ
in terms of extraction speed, customization, and their precision and recall for removing boilerplate
content.

Filtering The first layer of filtering often involves language identification [Wenzek et al., 2019].
Language filtering is used because certain other parts of the pipeline only work for specific languages,
and is often done with simple linear classifiers such as from fastText [Joulin et al., 2016]. Quality
filtering can be done with a combination of perplexity, classifier, and rule-based methods. CCNet uses
a 5-gram Kneser-Ney language model implemented in the KenLM library [Heafield, 2011] trained
on the target domain. The documents in the dataset are then sorted and filtered by their perplexity
under this model. Other datasets such as the one used to train GPT-3 [Brown et al., 2020] use a
classifier-based approach. This involves training a classifier on known-high-quality documents, such
as those from Wikipedia, as positive examples and unfiltered documents from Common Crawl as
negative examples. The classifier scores are used to filter low-quality documents from the dataset.
Finally, rule-based approaches such as those used in C4 [Raffel et al., 2020] and MassiveWeb [Rae
et al., 2021] involve removing pages with certain characters, too many or too few characters, too
high a proportion of symbols, or those with an abnormal average word length. OpenMathWeb uses a
mixture of these three approaches.

Deduplication Given the periodic nature of Common Crawl snapshots and a general redundancy in
web-sourced text, deduplication is an important processing step. Document-level near-deduplication
(e.g., in [Brown et al., 2020, Penedo et al., 2023]) often employs MinHashLSH, an efficient algorithm
for estimating the Jaccard similarity of documents. CCNet [Wenzek et al., 2019] uses paragraph-level
deduplication, which can help to remove common boilerplate content found in WET text-extractions.

D Limitations and Future Work

Despite the high quality of OpenWebMath, we note several limitations and avenues for future works.
First, due to the high cost of extracting data from all shards on Common Crawl, we were only able
to run our pipeline once. Therefore, many of our choices are without empirical justification and we
provide no ablation study. We also note that the nature of this particular type of dataset means that

13

Method Runtime (s) Source Code Link
Resiliparse 3.99 https://github.com/chatnoir-eu/chatnoir-resiliparse
HTML-Text 10.75 https://github.com/TeamHG-Memex/html-text
Inscripts 19.14 https://github.com/weblyzard/inscriptis
BoilerPy 24.94 https://github.com/jmriebold/BoilerPy3
jusText 31.17 https://github.com/miso-belica/jusText
HTML2Text 37.17 https://github.com/Alir3z4/html2text/
BeautifulSoup 38.42 https://code.launchpad.net/beautifulsoup
Trafilatura 63.90 https://github.com/adbar/trafilatura
ExtractNet 299.67 https://github.com/currentslab/extractnet

Table 5: We measured the performance of various HTML text extraction tools on a dataset of 1k
documents. Resiliparse was by far the most efficient, leading us to choose it for use in our pipeline.

Math Format Percentage of Documents
Found at least one instance of math 91.42%
MathJax with delimiters (inline) 50.27%
MathJax with delimiters (display) 23.37%
Math found in images 6.96%
.math-container 3.94%
MathML code 3.28%
<annotation> withing <math> tags 2.35%
<mathjax> tags 2.24%
align environments 1.72%
equation environments 1.18%
within <script> tags 1.01%
alttext property of <math> tags 0.24%

Table 6: Frequencies of different types of LATEX found in OpenWebMath. The most common format
of LATEX found in Common Crawl is MathJax, which uses user-defined delimiters to denote math
equations. Second most common is LATEX code within either the URL or alt text of an img tag.

there are many subjective choices to be made. For instance, what counts as a mathematical document?
What is a high-quality document? How do we choose the threshold for near-deduplication? For each
of these, we chose several values and manually inspected a few examples to choose. Due to the cost
constraints, there are also practical challenges with balancing cost with accuracy when filtering and
extracting text. For instance, our prefilter reduces the number of HTML documents processed to
under 1% of the documents in Common Crawl, which may be too aggressive. We also note that
OpenWebMath is an English-only dataset, which limits its applications for researchers and users who
speak other languages. Finally, we note that OpenWebMath only contains the text from math on the
web, not associated figures, which can be important for solving mathematical problems [OpenAI,
2023]. Future work should focus on finding empirical answers to the questions of what constitutes
good data, creating new, efficient filtering methodologies, and extracting images inline with math
text.

E Text Extraction

Choice of Base Text Extractor When considering which HTML text-extraction library to use, we
considered the efficiency, customization, and existing boilerplate reduction methods for each option.
The most commonly used option, using WET files extracted by Common Crawl, was not an option
since they do not deal with LATEX correctly and offer no customization. Other options such as jusText
[Endrédy and Novák, 2013], used in The Pile Gao et al. [2020], removed boilerplate too aggressively,
leading to sections containing math to be discarded. Likewise, Trafilatura [Barbaresi, 2021], which
was used in RefinedWeb [Penedo et al., 2023], had poor efficiency. We decided to go with Resiliparse
[Bevendorff et al., 2018] due to its balanced boilerplate removal, fast runtime, and efficient Common
Crawl parsing tools. Table 5 shows the full results for our comparison.

14

https://github.com/chatnoir-eu/chatnoir-resiliparse
https://github.com/TeamHG-Memex/html-text
https://github.com/weblyzard/inscriptis
https://github.com/jmriebold/BoilerPy3
https://github.com/miso-belica/jusText
https://github.com/Alir3z4/html2text/
https://code.launchpad.net/beautifulsoup
https://github.com/adbar/trafilatura
https://github.com/currentslab/extractnet

Model Size Layers Model Dim Heads Learning Rate Batch Size

1.4 B 24 2048 16 2.0× 10−4 1M

Table 7: Model Hyperparameters. We use the same architecture and hyperparameters, other than
batch size, as Pythia 1.4B [Biderman et al., 2023].

Table 8: List of Math Keywords used in the prefiltering stage.

Math Keywords
MathJax
mathjax
<math
math-container
katex.min.css
latex.php
codecogs
tex.cgi
class="tex"
class=’tex’

LATEX Extraction LATEX code comes in many forms throughout Common Crawl HTML files. We
employed an iterative process to refine our extraction rules. First, we filtered shards of Common
Crawl for documents that contain the string \frac. Then, we filtered those documents to find those
which our extraction code found no extractable LATEX. Then, we refined our code to include additional
sources of math until we were confident that we had reasonable support for all formats of LATEX
in HTML documents. Table 6 shows the breakdown of different common types of LATEX found in
HTML documents.

We note that most of the LATEX in OpenWebMath and across the internet is encoded using MathJax,
which presents a challenge. The majority of MathJax documents use dollar sign delimiters, but most
dollar signs on the web do not delimit LATEX equations. This leaves us with a few options:

• Detect the use of the MathJax script in the HTML file. If the script is imported, treat dollar
signs as LATEX code.

• Detect common LATEX commands in between dollar signs. If they are present, treat dollar
signs as LATEX code.

• Use the MathScore classifier to determine whether the page looks like it is talking about
math. If so, treat dollar signs as LATEX code.

The first option is not always accurate since the MathJax javascript code may be nested inside of
another import or named differently depending on the website. The latter two options make up
for many of these cases, but can fail to detect edge cases where math equations are present but
the surrounding text does not indicate that the document is mathematical. We suspect Minerva
[Lewkowycz et al., 2022] gets around this issue by using HTML documents where javascript code
has already been executed, in which case MathJax is converted from delimited text to explicit HTML
tags that are easy to detect.

F Interplay Between Extraction and Filtering

In prior works, we noticed many cases where suboptimal HTML text extractors were used and yet
text quality remains high in the dataset. This is due to the interplay between extraction and filtering.
Specifically, if a text extractor fails to extract the main text, gets the formatting wrong, or includes
too much boilerplate in the extraction, then both the classification and perplexity filters can filter
out such examples. This can lead to subtle biases in the dataset, where specific poorly-extracted
websites are excluded entirely even though do they contain high quality content. In the case of

15

making a mathematical dataset, failure to extract and deal with inline LATEX code properly can hurt
perplexity scores and lead to these documents being filtered out. We suggest practitioners tune their
text extraction pipeline on a diverse set of documents before applying filtering to avoid this bias.

G Model Hyperparameters

We trained models on 14.7B tokens using the LLaMA [Touvron et al., 2023c] tokenizer and the
architecture described in Pythia [Biderman et al., 2023]. We train the model using the GPT-NeoX
library [Andonian et al., 2023] on 8 A100 80GB GPUs. Exact hyperparameters can be found in
Table 7.

16

H Datasheet

We provide a datasheet for OpenWebMath, following the framework in Gebru et al. [2021].

MOTIVATION

For what purpose was the dataset cre-
ated?

The dataset was created to enable the train-
ing of large language models on mathemat-
ical texts, in order to improve their mathe-
matical reasoning capabilities.

Who created the dataset and on behalf of
which entity?

The dataset was created by the authors of
this work.

Who funded the creation of the dataset? Resources used in preparing this re-
search were provided, in part, by the
Province of Ontario, the Government
of Canada through CIFAR, Fujitsu
Limited, and companies sponsoring the
Vector Institute for Artificial Intelligence
(www.vectorinstitute.ai/partners).
Computing resources for model training
were provided by EleutherAI and Brigham
Young University.

Any other comment? None.

COMPOSITION

What do the instances that comprise the
dataset represent?

The instances are text documents extracted
from mathematics-related webpages from
Common Crawl.

How many instances are there in total? In total, OpenWebMath contains 6.3 million
documents.

Does the dataset contain all possible in-
stances or is it a sample (not necessarily
random) of instances from a larger set?

OpenWebMath doesn’t contain all instances
of text extracted from mathematics-related
webpages from Common Crawl, as our fil-
ters can miss a non-zero proportion of such
webpages. However, we expect OpenWeb-
Math to contain most of them.

What data does each instance consist of? Each instance consists of plain text and
metadata including the source URL, the
snapshot date, and other extraction parame-
ters.

Is there a label or target associated with
each instance?

No.

Is any information missing from individ-
ual instances?

No.

Are relationships between individual in-
stances made explicit?

No.

Are there recommended data splits? No.

Are there any errors, sources of noise, or
redundancies in the dataset?

Yes, a small portion of the documents from
OpenWebMath are not related to mathemat-
ics, or contain bad quality content.

Is the dataset self-contained, or does it
link to or otherwise rely on external re-
sources?

The dataset is entirely self-contained.

17

www.vectorinstitute.ai/partners

Does the dataset contain data that might
be considered confidential?

No.

Does the dataset contain data that, if
viewed directly, might be offensive, in-
sulting, threatening, or might otherwise
cause anxiety?

The data is filtered for quality and we do
not expect that this content will be offensive,
but since our filters may be imperfect we
make no guarantees.

COLLECTION

How was the data associated with each
instance acquired?

The data was acquired by processing data
from Common Crawl.

What mechanisms or procedures were
used to collect the data?

We refer to the CommonCrawl website
(commoncrawl.org) for details on how they
collect data.

If the dataset is a sample from a larger
set, what was the sampling strategy?

We use all data from Common Crawl that
was available before May 2023.

Who was involved in the data collec-
tion process and how were they compen-
sated?

Keiran Paster and Marco Dos Santos col-
lected the data and were compensated by
their respective graduate programs.

Over what timeframe was the data col-
lected?

OpenWebMath uses shards of Common-
Crawl gathered between 2013 and 2023.

Were any ethical review processes con-
ducted?

No.

PREPROCESSING

Was any preprocessing/cleaning/labeling
of the data done?

Yes. See section A.3 for details.

Was the “raw” data saved in addition to
the preprocessed/cleaned/labeled data?

Yes.

Is the software that was used to prepro-
cess/clean/label the data available?

Yes. See supplementary materials.

USES

Has the dataset been used for any tasks
already?

Yes, the data was used to train 1.4B param-
eter language models in section 3

Is there a repository that links to any
or all papers or systems that use the
dataset?

No.

What (other) tasks could the dataset be
used for?

We primarily envision that OpenWebMath
could be useful for language model pretrain-
ing, finetuning, and evaluation.

Is there anything about the composition
of the dataset or the way it was col-
lected and preprocessed/cleaned/labeled
that might impact future uses?

It is possible that the filtering stage of
the project discarded valuable documents,
such as those not written in English. This
makes OpenWebMath suboptimal for cre-
ating mathematical models in other lan-
guages.

Are there tasks for which the dataset
should not be used?

Any tasks which may considered irrespon-
sible or harmful.

DISTRIBUTION

Will the dataset be distributed to third
parties outside of the entity on behalf of
which the dataset was created?

Yes, the dataset will be available on the
Hugging Face Hub for NLP practitioners.

18

https://commoncrawl.org/

How will the dataset will be distributed? We will distribute the dataset on the Hug-
ging Face Hub

When will the dataset be distributed? The dataset will be available when the paper
is made public.

Will the dataset be distributed under
a copyright or other intellectual prop-
erty (IP) license, and/or under applicable
terms of use (ToU)?

The public extract is made available un-
der an ODC-By 1.0 license; users should
also abide to the CommonCrawl ToU:
https://commoncrawl.org/terms-of-use/.

Have any third parties imposed IP-based
or other restrictions on the data associ-
ated with the instances?

Not to our knowledge.

Do any export controls or other regula-
tory restrictions apply to the dataset or
to individual instances?

Not to our knowledge.

MAINTENANCE

Who will be supporting/hosting/main-
taining the dataset?

The dataset will be hosted on the Hugging
Face Hub.

How can the owner/curator/manager of
the dataset be contacted?

keirp@cs.toronto.edu

Is there an erratum? No.

Will the dataset be updated? No.

If others want to extend/augment/build
on/contribute to the dataset, is there a
mechanism for them to do so?

No.

Table 9: Datasheet for OpenWebMath, following the framework intro-
duced by Gebru et al. [2021].

19

https://commoncrawl.org/terms-of-use/

	Introduction
	Building OpenWebMath
	Objectives
	Overview of the pipeline

	Dataset Analysis
	Conclusion
	OpenWebMath Pipeline
	Prefiltering
	Text extraction
	Filtering
	Math Score

	Deduplication
	Manual Inspection

	Data Composition Analysis Methodology
	Related Work
	Mathematics datasets and benchmarks
	Web Data Processing Pipelines

	Limitations and Future Work
	Text Extraction
	Interplay Between Extraction and Filtering
	Model Hyperparameters
	Datasheet

