SATLM: Satisfiability-Aided Language Models
Using Declarative Prompting

Xi Ye Qiaochu Chen Isil Dillig Greg Durrett
Department of Computer Science
The University of Texas at Austin
{xiye,qchen,isil,gdurrett}@cs.utexas.edu

Abstract

Prior work has combined chain-of-thought prompting in large language models
(LLMs) with programmatic representations to perform reasoning. While such an
approach works well for tasks that only require forward reasoning (e.g., straightfor-
ward arithmetic), it is less effective for problems that require more sophisticated
planning and search. In this paper, we propose a new satisfiability-aided language
modeling (SATLM) approach for improving the reasoning capabilities of LLMs.
We use an LLM to generate a declarative task specification rather than an imper-
ative program and leverage an off-the-shelf automated theorem prover to derive
the final answer. By offloading the actual reasoning task to an automated theorem
prover, our approach can guarantee the correctness of the answer with respect to the
parsed specification and avoid planning errors in the solving process. We evaluate
SATLM on 6 datasets and show that it consistently outperforms program-aided
LMs in an imperative paradigm. In particular, SATLM outperforms program-aided
LMs by more than 20% on a challenging subset of the GSM arithmetic reasoning
dataset; SATLM also achieves a new SoTA on LSAT and BOARDGAMEQA.

1 Introduction

Using large language models (LLMs) to perform complex reasoning has been a central thrust of recent
research on LLMs [1} 4} 26, 38]]. Solving a complex reasoning problem involves three conceptual
components: parsing the problem to solve out of its natural language description, deriving a plan for
solving the problem, and executing that plan to obtain an answer. Recent work on improving CoT
prompting focuses on fixing execution errors by augmenting LLMs with symbolic executors such as
a Python interpreter, which leads to improved performance on arithmetic and symbolic reasoning
tasks [[10,13,20]. However, CoT prompting [|34} 23] and its executor-augmented successors [10} 3} [20]]
are oriented towards imperative solving procedures: a CoT or a program specifies the reasoning
procedure as chained steps [34}10] in the order of execution. While this is effective for problems
whose natural language already provides a suitably clear “plan” for the reasoning, it only leads to
limited success for reasoning problems like in Figure|l|that do not outline such a plan [28].

Our work tackles both execution errors and, more importantly, planning errors. We propose
SATisfiablity-aided Language Modeling (SATLM) using declarative prompting. The core idea
is to cast a natural language (NL) reasoning problem as a satisfiability (SAT for short) problem
specified by declarative logical formulas. As shown in Figure[I] (right), given a problem in NL, we
prompt an LLM to parse it into a SAT problem which consists of a set of logical formulas, then
obtain the solution by invoking a SAT solver The LLM can be prompted to accurately understand
the preconditions stated in the problem while leveraging the solver for planning out the solving

'We use the term SAT solver to refer to any automated reasoning tool for checking the satisfiability in formal
logic. Hence, “SAT solver” in this paper includes first-order theorem provers as well as SMT solvers.

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Workshop on MATH-AL

Input
Q: Alex, Stan, and Adelwolfe are trying to catch them all, Pokemon that is. Together they have caught 339 Pokemon. Alex has caught 5 more than Stan, and Stan has
caught 13 less than 4 times as many as Adelwolfe has caught. How many Pokemon has Stan caught?

CoT ProgramLM SatLM

LLM (Parse + Plan + Execute) LLM (Parse + Plan)

solution # solution @
total_pokemon = 339 total_pokemon = 339

alex_pokemon =5 stan_pokemon = Variable()
stan_pokemon = 4 alex_pokemon = stan_pokemon + 5
adelwolfe_pokemon = 13

stan_pokemon = (total_pokemon - alex_pokemon
- adelwolfe_pokemon * stan_pokemon) / (1 -
stan_pokemon)

result = stan_pokemon

Let X be the number of Pokemon Stan has caught.
Alex has caught 5 more than Stan, so Alex has caught

stan_pokemon = adelwolfe_pokemon * 4 - 13
total_pokemon = alex_pokemon + stan_pokemon +
adelwolfe_pokemon

result = stan_pokemon

oduces 5X + 5 = 339

Subtracting 5 from both sides produces 5X = 334. ‘ Program ‘ FOL Formulas
Dividing both sides by 5 produces X = $66.80, so Stan

has caught 66 Pokemon. (Execute) Solver (Plan + Execute)
Theansuerisss. 9 @ resut=04 ¥ } 2R resut=147 f

Figure 1: Illustration of our SATisfiability-aided Language Modeling approach (right). We first
parse an NL input into a task specification (a set of logic constraints) using declarative prompting
(Section [2.1]) and then employ a SAT solver to solve the problem (Section[2.2)). By only using the
LLM:s to generate declarative specifications and relying on a solver to handle the reasoning, SATLM
generates the correct answer. By contrast, COT makes errors when parsing an equation; PROGLM
produces an incorrect reasoning chain (both errors are highlighted in red).

procedure. In addition, the SAT solver also can also guarantee the correctness of execution, similar to
the interpreter used in program-aided language models (PROGLM).

We evaluate our approach on 6 datasets on arithmetic reasoning and logical reasoning. Our SATLM
consistently outperforms COT and PROGLM across all datasets, usually by a large margin. On
GSM-SYS and ALGEBRA, SATLM outperforms PROGLM by more than 20%; on GSM, SATLM
achieves 84.8% with self-consistency decoding using few-shot prompting, equaling against past
work that uses the full training set and the same LLM [[18, 22]]. SATLM also sets a new SoTA on
LSAT [39] and BOARDGAMEQA [14].

2 SAT-Aided Language Models using Declarative Prompting

Overview This work studies using LLMs to solve NL reasoning tasks. At a high level, an NL
reasoning task is a NL description of a collection of facts ® (such as propositions or constraints)
about some objects and a question () related to these objects. The goal of the reasoning task is to find
an answer to @ that can be deduced from the information provided in ®.

We conceptualize the general procedure for solving NL reasoning tasks in three steps: parsing,
planning, and execution. We are given natural language input x5y = (NL(®P), NL(Q)) which
describes both ® and (). Our first step is to parse this natural language into a predicted rask
specification (®, Q), which is a formal description of the facts and the query.

Given (<i>, Q), the planning step then involves determining a sequence of reasoning steps [ry, . .., 7]
beginning with the task specification and ending with the answer to the question. Each steps involves
invoking a function (e.g., arithmetic operator or logical operator) that produces intermediate results
which can be utilized in subsequent steps. A plan can be formulated by an LLM with COT prompting
or by a symbolic solver as in our work here. Finally, we execute the plan systematically with either a
symbolic executor or an LLM, returning the output of the last step, r,,, as the final answer.

Our solution, SAT-aided LL.Ms approaches the problem using exactly these three steps. Prior work,
CoOT and PROGLM, can also be framed in the parse-plan-execute framework proposed above. In
particular, COT [23l 34] uses LLMs to perform each of the three steps. PROGLM [10, 13} 20]
combine the parsing and planning steps to use an LLM to derive a program that corresponds to the
plan. Please refer to Figure[T|for concrete examples.

2.1 Declarative Prompting

We use few-shot prompting to generate the specification sy, for the test input x4.,;. Specifically,
we include few-shot input-specifications pairs (z;, s;)%_, in the prompt, append test input ;..
after the prompt, and let the LLM complete the specification for Ziess, 1.€., Stest = D(Trest

Z1,81,..., %k, Sk). We show an an example specification for an arithmetic reasoning task in Figure

Table 1: Comparison of our approach (SATLM) against standard prompting, COT and PROGLM.
With greedy decoding, SATLM outperforms COT and PROGLM on all datasets except for GSM by a
substantial margin, and is on par with PROGLM on GSM. With self-consistency decoding, SATLM
is consistently better than PROGLM, giving SoTA accuracy on LSAT and BOARDGAMEQA.

GSM-SYs GSM ALGEBRA LSAT BOARD CLUTRR PROOF

code-davinci-002 (greedy decoding)

STANDARD 21.0 222 459 22.0 44.6 41.2 76.6
CoT 46.5 62.7 53.6 23.5 60.7 40.8 80.1
PROGLM 434 72.7 52.3 — — 58.9 83.7
SATLM 69.4 71.8 71.5 35.0 794 68.3 99.7
code-davinci-002 (self-consistency decoding)
CoT 56.1 713 64.9 23.1 62.8 45.7 88.7
PROGLM 534 824 57.7 — - 71.9 91.2
SATLM 80.9 84.8 90.9 374 80.7 80.1 99.7

Observe that in both examples, our SAT formulas (i.e., the logical formulas of [z1, .. .,

are written as code following Python syntax and the natural language parts in 37, are written using
comment syntax.

2.2 Solving with a SAT Solver

SAT problem A SAT problem, denoted as P, is a triple (®, 7, Q)) where ® is a set of first-order
logic formulas in some theory 7 and @ is the query of interest. We use Variable(P) to denote
the free variables in ®. () contains only variables in Variable(P). An example SAT problem is
P={r+y=3,2—y=1},TgUTz,x — 2), where Tg U Tz indicates that only equality and
linear arithmetic operations on integers are allowed in the formulas.

Many NL reasoning tasks can be formulated as SAT problems and solved using an off-the-shelf
solver. For arithmetic reasoning, the SAT formulas ® are equations encoding the relationships
between variables, and ¢ specifies the target variable asked in the question (see Figure[I). For logical
reasoning, ¢ encodes preconditions and ¢ specifies the target statement posed by the question.

Parsing NL to a SAT problem Recall that we obtain a specification s;.s; from a test NL task Teest.
To derive the SAT problem Prest = (‘btem tests th) from s;.4:, We extract the constraints <I>test
and the target expression Qtest (marked by solve in our prompt) by taking all the z; in X1, of s4es¢.
We identify the theory 7;.s: by analyzing the formulas in @test.

Solving the SAT problem Given the SAT problem P, we invoke an automated theorem prover
(such as the Z3 SMT solver [7] used in our implementation) to obtain a model M that maps
each free variable v € Variable(P) to a concrete value under theory 7. The final answer is
obtained by substituting each free variable v; in Q with M [v;]. For example, given the problem
{r+y=3,2—y=1},Tg UTz,x — 2), we ask the solver to find a solution to the constraint
xz+y=3Az—y=1Iinthe theory Tg U Tz, which yields x = 2 and y = 1. Then, to obtain the
final answer, we substitute x by 2 in the target expression x — 2 to obtain the result 2 — 2 = 0.

3 Experiments

Setup Our work mainly investigates 2 arithmetic reasoning datasets and 4 logical reasoning tasks.
We compare SATLM against 3 baselines, including standard promptlng (directly giving the answer),
COT, and executor-augmented LLMs (PROGLM). We conduct our main experiments and analysis on
code-davinci-002 [2]. We evaluate the performance with both greedy decoding and self-consistency
decoding [33]]. We list all dataset statistics in Appendix [A]and detailed setup in Appendix [G|

Main Results Table([I|shows the performance of our approach compared to the baselines. In general,
our SAT-aided approach outperforms both COT and PROGLM by a substantial margin except on
GSM with greedy decoding.

The first two columns show the performance on the Table 2: The performance of variants of our
GSM dataset. COT and PROGLM achieve much approach that use CoT Solver. Using declar-
worse performance on GSM-SYS than on GSM, in- ative prompting with CoT solver is more ef-
dicating that GSM-SYS is a challenging subset. On fective than imperative CoT prompting.

this subset, SATLM achieves 69.4% and 80.9% with

greedy decoding and self-consistency decoding, sur- GSM-Sys GSM CLUTRR
passing both PROGLM and COT more than by 20%. STANDARD 210 22 412
On the original GSM dataset, the SATLM model has CoT 465 62.7 40.8
a slightly lower accuracy than PROGLM with greedy PAL Bs P8 389
decoding, but outperforms it with self-consistency de- SATsymsoLvER 69.4 7.7 683
SATcorsoLver 54.5 63.2 489

coding by 2.4%. This self-consistency accuracy of
84.8% even exceeds recent work that uses full training
set on the same LLM (82.3% in DIVERSE [18]]; 84.5% in LEVER [22]). On ALGEBRA, a dataset of
challenging math problems extracted from Algebra textbooks, SATLM also outperforms COT and
PROGLM by more than 20%.

On LSAT, BOARDGAMEQA, CLUTRR, and PROOFWRITER, SATLM consistently achieves the best
performance with either greedy decoding or self-consistency decoding. In particular, SATLM also
sets the new SoTA on both LSAT and BOARDGAMEQA, surpassing previous models that are trained
on the full training set. Specifically, SATLM boots the SoTA from 30.9% [39] to 37.4% on LSAT
and from 73.9% [14]) to 80.7% on BOARDGAMEQA.

3.1 Analysis

Ablation: Impact of Symbolic Solver We test
a variant of our approach that still uses declar-
ative prompting but then solves the equations in
NL with CoT rather than using the symbolic solver
(see Figure[I5]in Appendix for concrete examples).
Essentially, the LLM itself carries out planning
and execution. As shown in Table[2] SATcoTsoLvER

can solve many more SAT problems than NoO- CONaM ayne P A Bl
SOLVER. This partially reflects the effectiveness sarLm 63.4 76.4 30.0 50.6 96.4
of CoT and partially reflects the fact that many
dataset instances require relatively simple plan-

Table 3: Results on gpt-3.5-turbo, text-
davinci-003, and code-davinci-001. The effec-
tiveness of SATLM can generalize across LLMs.

GSM-Sys GSM LSAT CLUTRR PROOF

gpt-3.5-turbo (greedy decoding)

text-davinci-003 (greedy decoding)

; X) CoT 428 62.5 217 345 835
ning and execution, allowing pure forward rea- progLM 404 7 _ 412 837
soning to solve them. However, using a symbolic ~ SATLM 63.6 70.3 30.4 58.2 99.7
solver (SATsymsoLver)> Which guarantees correct code-davinci-001 (greedy decoding)
planning and execution, leads to further improve- progLm 155 35.6 _ 22 638
ments. SATLM 16.5 342 196 302 866

Results Across Different Language Models In

addition to the main LLM used in our work, code-davinci-002, we further test whether SATLM
can generalize to other LLMs. We choose gpt-3.5-turbo (0613 version), text-davinci-003, and
code-davinci-001. gpt-3.5-turbo is optimized for chat. text-davinci-003 is an LLM pretrained on
NL, and tuned to align with human feedback [24]. code-davinci-001 is also an LLM pretrained on
code, but less capable compared to 002. As shown in Table[3} SATLM is better than PROGLM on the
arithmetic reasoning and logical reasoning datasets except for GSM across these three LLMs. The
trend is congruent with the results on code-davinci-02 (Table[I), which suggests the approach’s
general applicability across different LLMs, regardless of their varying capabilities.

Sensitivity to Different Exemplar Sets We test whether the advantages of SATLM is sensitive
to different sets of exemplars. We experiment with 3 sets of exemplars on code-davinci-002. As
shown in Table] SATLM consistently outperforms PROGLM by a large margin on GSM-SYS and
CLUTRR, and achieves comparable performance on GSM. The results suggest the effectiveness of
our approach is insensitive to varying the choice of exemplars.

LLMs Can Perform Commonsense Reasoning While Parsing There are many problems that
do not state premises or constraints in a completely explicit way. Figure [2)) shows two examples

Input Input

Q: Farmer Brown has 60 animals on his farm, all The llama is named Peddi. The pelikan has a card that is red in color, and is named Beauty.

either chickens or cows. He has twice as many Rule2: If the pelikan has a name whose first letter is the same as the first letter of the llama's name, then the

chickens as cows. How many legs do the animals pelikan creates a castle for the gadwall. o . . .

e Rule3: The pelikan will create a castle for the gadwall if it (the pelikan) has a card with a primary color.
SAT Solution SAT Solution

animals_total = 60 Implies(has_same_first_letter_name(pelikan, llama), create_castle(pelikan, gadwall)) # Rule2

animals_chickens = Variable() Implies(has_card_with_primary_color(pelikan), create_castle(pelikan, gadwall)) # Rule3

animals_cows = Variable() # The first letter of Peddi is P. The first letter of Beauty is B. So the pelikan does not

animals_chickens = animals_cows * 2 have the same first letter name as the llama.

animals_total = animals_chickens + animals_cows has_same_first_letter_name(pelikan, llama) == False

legs_chickens = animals_chickens * 2 # The pelikan has a card that is red in color. red is a primary color.

legs_cows = animals_cows * 4 has_card_with_primary_color(pelikan) == True
legs_total = legs_chickens + legs_cows

Figure 2: Examples outputs from GSM (left) and BOARDGAMEQA (right) show that LLMs can
perform commonsense reasoning while parsing.

where commonsense inferences are required during parsing. For example, on the left, the model must
recognize that animals refers to the chickens and cows collectively. Similarly, knowing that red is a
primary color is needed to successfully apply rules on BOARDGAMEQA (right). We observe from the
outputs in both cases that LLMs are capable of implicitly performing commonsense reasoning and
produce correct logical formulas in the parsing step. As shown in Table[I} SATLM exhibits strong
performance on BOARDGAMEQA, a dataset which requires this implicit background knowledge.

4 Related Work

Our work focus on improving LLMs on reasoning tasks,
which are challenging for language models even with re-
cent developments [21}[11]]. Various techniques have been
proposed for improving reasoning abilities [23} 140, (16}
151 91 32 117, 20, 35]]. They largely follow a chain-of-
thought [34]] or scratchpad [23]] paradigm. Among them,
our work is the most related to the line of work that gen-

Table 4: The performance of PROGLM
and SATLM with varying exemplar
sets. SATLM consistently outperforms
PROGLM on GSM-SYS and CLUTRR.

GSM-Sys GSM CLUTRR

. . . = PROG 43.4 727 58.9
erates imperative programs to be executed by a symbolic B gar 9.4 718 683
executor, such as a Python interpreter [[10, 3] or domain-

. : . o PROG 414 72.5 59.0
specific executors [20]. In this work, we propose a dif- g gur 7.8 713 67.9
ferent paradigm that parses NL prqblems into declarative « Proa 1 703 575
SAT problems and offloads the solving procedure to a SAT 3 gar 66.7 70.0 68.0

solver.

Previous work has also explored equipping LLMs with other tools, including search engines [36} 29],
calculators [5, 4], or domain-specific special modules [29, [§]. A line of work focuses on using
program-related tools such as program executors [25]], program analysis tools [13]], and synthesis
tools [27] to enhance the quality of the generated code. Our works further explores improving LLMs
with SAT solvers.

5 Conclusion

We have presented a framework for satisfiability-aided language models for arithemtic reasoning and
logical reasoning. We use an LLM to parse an NL query into a declarative specification and leverages
a SAT solver to derive the final answer. Evaluation results on 6 datasets demonstrate the effectiveness
of our approach over program-aided language models.

References

[1] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. In Proceedings of
the Conference on Advances in Neural Information Processing Systems (NeurIPS).

[2] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra,
Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. 2021. Evaluating large language models trained on code. CoRR, abs/2107.03374.

[3] Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reasoning for numerical reasoning tasks. arXiv
preprint arXiv:2211.12588.

[4

—_

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Baindoor Rao, Parker Barnes,
Yi Tay, Noam M. Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Benton C. Hutchin-
son, Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier
Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David
Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat,
Aitor Lewkowycz, Erica Oliveira Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason
Wei, Kathleen S. Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. 2022.
Pal.M: Scaling Language Modeling with Pathways. ArXiv, abs/2204.02311.

[5] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and
John Schulman. 2021. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168.

[6] Antonia Creswell, Murray Shanahan, and Irina Higgins. 2023. |Selection-inference: Exploiting
large language models for interpretable logical reasoning. In The Eleventh International
Conference on Learning Representations.

[7] Leonardo De Moura and Nikolaj Bjgrner. 2008. Z3: An Efficient SMT Solver. In Proceedings
of the Theory and Practice of Software, 14th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, TACAS’08/ETAPS’08, page 337340, Berlin,
Heidelberg. Springer-Verlag.

[8] David Demeter and Doug Downey. 2020. Just add functions: A neural-symbolic language
model. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05):7634-7642.

[9] Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. 2022. Complexity-based
prompting for multi-step reasoning. In Proceedings of the International Conference on Learning
Representations (ICLR).

[10] Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan,
and Graham Neubig. 2023. Pal: Program-aided language models. In Proceedings of the
International Conference on Machine Learning (ICML).

[11] Artur d’Avila Garcez and Luis C Lamb. 2023. Neurosymbolic Al: The 3rd wave. Artificial
Intelligence Review, pages 1-20.

[12] Joy He-Yueya, Gabriel Poesia, Rose E. Wang, and Noah D. Goodman. 2023. Solving math
word problems by combining language models with symbolic solvers. ArXiv, abs/2304.09102.

http://arxiv.org/abs/2107.03374
https://openreview.net/forum?id=3Pf3Wg6o-A4
https://openreview.net/forum?id=3Pf3Wg6o-A4
https://doi.org/10.1609/aaai.v34i05.6264
https://doi.org/10.1609/aaai.v34i05.6264

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh Parthasarathy, Sriram
Rajamani, and Rahul Sharma. 2022. Jigsaw: Large language models meet program synthesis.
ICSE.

Mehran Kazemi, Quan Yuan, Deepti Bhatia, Najoung Kim, Xin Xu, Vaiva Imbrasaite, and
Deepak Ramachandran. 2023. Boardgameqa: A dataset for natural language reasoning with
contradictory information. In Proceedings of the Conference on Advances in Neural Information
Processing Systems (NeurIPS).

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and
Ashish Sabharwal. 2022. Decomposed prompting: A modular approach for solving complex
tasks. In Proceedings of the International Conference on Learning Representations (ICLR).

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. 2022.
Large language models are zero-shot reasoners. In Advances in Neural Information Processing
Systems (NeurIPS).

Shiyang Li, Jianshu Chen, Yelong Shen, Zhiyu Chen, Xinlu Zhang, Zekun Li, Hong Wang, Jing
Qian, Baolin Peng, Yi Mao, et al. 2022. Explanations from large language models make small
reasoners better. arXiv preprint arXiv:2210.06726.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu
Chen. 2022. On the advance of making language models better reasoners. arXiv preprint
arXiv:2206.02336.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga,
Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang
Yuan, Bobby Yan, Ce Zhang, Christian Cosgrove, Christopher D. Manning, Christopher R’e,
Diana Acosta-Navas, Drew A. Hudson, E. Zelikman, Esin Durmus, Faisal Ladhak, Frieda Rong,
Hongyu Ren, Huaxiu Yao, Jue Wang, Keshav Santhanam, Laurel J. Orr, Lucia Zheng, Mert
Yuksekgonul, Mirac Suzgun, Nathan S. Kim, Neel Guha, Niladri S. Chatterji, Omar Khattab,
Peter Henderson, Qian Huang, Ryan Chi, Sang Michael Xie, Shibani Santurkar, Surya Ganguli,
Tatsunori Hashimoto, Thomas F. Icard, Tianyi Zhang, Vishrav Chaudhary, William Wang,
Xuechen Li, Yifan Mai, Yuhui Zhang, and Yuta Koreeda. 2022. Holistic evaluation of language
models. ArXiv, abs/2211.09110.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidi-
anaki, and Chris Callison-Burch. 2023. Faithful chain-of-thought reasoning. arXiv preprint
arXiv:2301.13379.

Gary Marcus. 2020. The next decade in Al: four steps towards robust artificial intelligence.
arXiv preprint arXiv:2002.06177.

Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoyanov, Wen-tau Yih, Sida I Wang, and Xi Victo-
ria Lin. 2023. LEVER: Learning to Verify Language-to-Code Generation with Execution. In
Proceedings of the International Conference on Machine Learning (ICML).

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin,
David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton,
and Augustus Odena. 2021. Show your work: Scratchpads for intermediate computation with
language models. ArXiv, abs/2112.00114.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke E. Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Francis
Christiano, Jan Leike, and Ryan J. Lowe. 2022. Training language models to follow instructions
with human feedback.

Gabriel Poesia, Alex Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and
Sumit Gulwani. 2022. |Synchromesh: Reliable code generation from pre-trained language
models. In International Conference on Learning Representations.

https://openreview.net/forum?id=KmtVD97J43e
https://openreview.net/forum?id=KmtVD97J43e

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song,
John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford, Tom
Hennigan, Jacob Menick, Albin Cassirer, Richard Powell, George van den Driessche, Lisa Anne
Hendricks, Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth Dathathri,
Saffron Huang, Jonathan Uesato, John F. J. Mellor, Irina Higgins, Antonia Creswell, Nathan
McAleese, Amy Wu, Erich Elsen, Siddhant M. Jayakumar, Elena Buchatskaya, David Budden,
Esme Sutherland, Karen Simonyan, Michela Paganini, L. Sifre, Lena Martens, Xiang Lorraine
Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki
Lazaridou, Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsimpoukelli, N. K. Grigorev, Doug
Fritz, Thibault Sottiaux, Mantas Pajarskas, Tobias Pohlen, Zhitao Gong, Daniel Toyama,
Cyprien de Masson d’ Autume, Yujia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin,
Aidan Clark, Diego de Las Casas, Aurelia Guy, Chris Jones, James Bradbury, Matthew G.
Johnson, Blake A. Hechtman, Laura Weidinger, Iason Gabriel, William S. Isaac, Edward
Lockhart, Simon Osindero, Laura Rimell, Chris Dyer, Oriol Vinyals, Kareem W. Ayoub, Jeff
Stanway, L. L. Bennett, Demis Hassabis, Koray Kavukcuoglu, and Geoffrey Irving. 2021.
Scaling Language Models: Methods, Analysis & Insights from Training Gopher. ArXiv,
abs/2112.11446.

Kia Rahmani, Mohammad Raza, Sumit Gulwani, Vu Le, Daniel Morris, Arjun Radhakrishna,
Gustavo Soares, and Ashish Tiwari. 2021. Multi-modal program inference: A marriage of
pre-trained language models and component-based synthesis. Proc. ACM Program. Lang.,
5(O0PSLA).

Danilo Neves Ribeiro, Shen Wang, Xiaofei Ma, Henghui Zhu, Rui Dong, Deguang Kong,
Juliette Burger, Anjelica Ramos, zhiheng huang, William Yang Wang, George Karypis, Bing
Xiang, and Dan Roth. 2023. STREET: A multi-task structured reasoning and explanation
benchmark. In The Eleventh International Conference on Learning Representations.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2023. Toolformer: Language models can teach
themselves to use tools. arXiv.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L. Hamilton. 2019.
CLUTRR: A diagnostic benchmark for inductive reasoning from text. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP).

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. 2021. ProofWriter: Generating implications,
proofs, and abductive statements over natural language. In Findings of the Association for
Computational Linguistics: ACL-IJCNLP (ACL Findings).

Peifeng Wang, Aaron Chan, Filip [lievski, Muhao Chen, and Xiang Ren. 2022. Pinto: Faithful
language reasoning using prompt-generated rationales. In Proceedings of the International
Conference on Learning Representations (ICLR).

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Huai hsin Chi, and Denny Zhou. 2022.
Self-consistency improves chain of thought reasoning in language models. In Proceedings of
the International Conference on Learning Representations (ICLR).

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny Zhou.
2022. Chain of thought prompting elicits reasoning in large language models. In Proceedings
of the Conference on Advances in Neural Information Processing Systems (NeurIPS).

Xi Ye and Greg Durrett. 2023. Explanation selection using unlabeled data for in-context learning.
In arXiv.

Wenhao Yu, Dan Iter, Shuohang Wang, Yichong Xu, Mingxuan Ju, Soumya Sanyal, Chenguang
Zhu, Michael Zeng, and Meng Jiang. 2023. Generate rather than retrieve: Large language
models are strong context generators. In International Conference for Learning Representation
(ICLR).

https://doi.org/10.1145/3485535
https://doi.org/10.1145/3485535
https://openreview.net/forum?id=1C_kSW1-k0
https://openreview.net/forum?id=1C_kSW1-k0
https://doi.org/10.48550/ARXIV.2302.04761
https://doi.org/10.48550/ARXIV.2302.04761

[37] Hanlin Zhang, Ziyang Li, Jiani Huang, Mayur Naik, and Eric Xing. 2022. Improved logical
reasoning of language models via differentiable symbolic programming. In First Workshop on
Pre-training: Perspectives, Pitfalls, and Paths Forward at ICML 2022.

[38] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam
Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and
Luke Zettlemoyer. 2022. OPT: Open Pre-trained Transformer Language Models. ArXiv,
abs/2205.01068.

[39] Wanjun Zhong, Siyuan Wang, Duyu Tang, Zenan Xu, Daya Guo, Yining Chen, Jiahai Wang,
Jian Yin, Ming Zhou, and Nan Duan. 2022. Analytical reasoning of text. In Findings of the
Association for Computational Linguistics: NAACL (NAACL Findings).

[40] Denny Zhou, Nathanael Scharli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
Schuurmans, Olivier Bousquet, Quoc Le, and Ed Chi. 2022. Least-to-most prompting enables
complex reasoning in large language models. ArXiv, abs/2205.10625.

https://openreview.net/forum?id=8lNy3QCaxHX
https://openreview.net/forum?id=8lNy3QCaxHX

A Detailed Statistics of Datasets

We show the statistics of all the datasets used in our paper in Table 5]

For CLUTRR, we follow the setting in FATTHFULCOT [20] and construct the prompt using exemplars
requiring 2-3 reasoning steps and test whether the model can generalize to examples requiring up to
10 steps. We used the pre-processed test data consisting of 1,042 test examples from past work [20].

For PROOFWRITER, we use the closed world assumption setting, following past work [6]. We
construct our test set by randomly sampling a subset of 1,000 examples (out of 10,000) from the test
split of depth-5 setting, the most challenging setting.

Table 5: Number of few-shot exemplars, number of test examples and license for the datasets used in
our paper.

#Shot # Test License

GSM [3] 8 1,319 MIT license

GSM-Sys 8 547 MIT license

ALGEBRA [12] 8 222 Creative Commons Attribution Share Alike 4.0
LSAT [39] 8 230 MIT license
BOARDGAMEQA [14] 5 3,000 CCBY 4.0

CLUTRR [30] 8 1,042 Attribution-NonCommercial 4.0
PROOFWRITER [31] 4 1,000 CC BY 4.0.

GSM-SYS Dataset We construct GSM-SYS, a special subset consisting of 547 examples extracted
from GSM. Specifically, we filter the entire GSM dataset (train split + test split) to find examples
whose human-annotated explanations involve a system of equations, using patterns like “let [letter]
be”, “assume [letter] be” and “[number][letter]”. We manually inspected 10% of the examples and
found 80% of those samples did involve systems of equations in the explanation. We refer to this
more challenging dataset as GSM-SYS.

B Details of the Setup

Details of Decoding We evaluate the performance with both greedy decoding and self-consistency
decoding [33]]. Owning to the high computation cost, we use 5 samples for LSAT, BOARDGAMEQA,
and PROOFWRITER, which involves long prompts, and use 40 samples for all other datasets.

Details of Prompts In general, we leverage COT prompts and PROGLM prompts from existing
work whenever available, and manually write SATLM prompts for the same exemplar sets. Prompt
examples for all datasets can be found in Appendix [G]

For arithmetic reasoning datasets, GSM, GSM-SYS, and ALGEBRA, we adapt the original COT
prompt and PROGLM prompt used in program-aided language models [[L0]. Specifically, we replace
one random exemplar in the original prompt with another exemplar sampled from GSM-SYS. This
is to improve the performance of COT and PROGLM on GSM-SYS, as the original exemplar set
achieves suboptimal performance for GSM-SYS. Our adapted COT and PROGLM prompts achieve
better performance compared to the original ones on both GSM and GSM-SYSs (see Appendix [C| for
details).

For LSAT, we randomly sample 8 exemplars and write prompts for COT and SATLM. We note that
LSAT is a particularly challenging task: we tried 3 CoT prompts written by 3 different authors of
our paper, which all led to around 20% accuracy. Similar results are reported in other work [[19, 28]
In addition, we only report COT results, leaving out PROGLM. This decision is due to the fact that
PROGLM uses Python as its program interpreter. While Python is a general-purpose programming
language, it does not provide native support for formal logic reasoning, including essential components
like logical inference rules and manipulation of logical formulas. Solving problems from LSAT
requires strategies like proof by contradiction (see Appendix [G|for a detailed example), which we see
no way to represent in the PROGLM framework and is not addressed in prior work.

BOARDGAMEQA contains problems requiring 1-3 depth of reasoning. We randomly sample 5
exemplars from the training set of depth 1 and depth 2 to construct the prompts for evaluation on the

10

test set of depth 1 and depth 2, respectively. We randomly sample 5 exemplars from the training set
of depth 2 to construct the prompt for test set of depth 3, as using exemplars of depth 3 would lead to
prohibitively long prompts to be consumed by LLMs. Similarly, we only report COT results as the
baselines, leaving out PROGLM for BOARDGAMEQA. We use the proofs provided by the authors to
construct the COT prompts and manually annotate the SAT specifications to construct the SATLM
prompts.

For CLUTRR, we use the COT prompt and PROGLM prompt provided in FAITHFULCOT [20]. For
PROOFWRITER, we use the COT prompt from SELECTION-INFERENCE [6]], and adapt it to form
the PROGLM prompt.

C Performance of Original COT and PROGLM Prompts on Arithmetic
Reasoning Datasets

Table 6: Performance of different approaches using our adapted exemplar set and the original
exemplar set used in COT and PAL.

ADAPTED (OURS) ORIGINAL

GSM-Sys GSM GSM-Sys GSM
CoT 46.5 62.7 35.7 62.4
PROGLM 434 72.7 36.1 71.7
SATLM 69.4 71.8 66.7 70.9

Recall that we construct our arithmetic reasoning prompt used in Table[I|by replacing one random
exemplar in the original prompt used in COT and PROGLM with an random example from GSM-SYS.
We show the performance of COT, PROGLM, and our SATLM in Table [6]using our adapted exemplar
set and original exemplar set in Table [6]

Our adaptation significantly improves the performance of COT and PROGLM on GSM-SYS, and
slightly improves the performance on GSM. Furthermore, we still see that SATLM outperforms both
CoT and PROGLM by a large margin on GSM, using either our adapted set or the original set.

D Extended Discussion on Concurrent Work

Table 7: Performance of different approaches on ALGEBRA.
ALGEBRA GSM

CoT 53.6 62.4
PROGLM 52.3 72.7
SATLM (Ours) 71.5 71.8
MATHSYM [12] 76.3 69.4

Similar to our work, [12] proposes to solve arithmetic reasoning problems by parsing the problem
into a set of variables and equations and using an external solver to derive the final answer. While
their formalization is restricted to arithmetic problems, we use SAT problems encoded with first-order
logical formulas that unifies a wide range of reasoning tasks.

In addition, we also evaluate our approach on the ALGEBRA dataset in [12], which consists of 222
examples from Algebra textbooks. We note that the results between ours and MATHSYM are not
directly comparable, as MATHS YM picks a different exemplar set. As shown in Table[7] ALGEBRA
is more challenging than GSM, and SATLM outperforms PROGLM and COT by more than 20%.

11

E Examples of Error Cases of SATLM

E.1 Examples of Unsatisfiable and Ambiguous Formulas

We show examples of formulas that are unsatisfiable or have ambiguous answers in Figure[3] Figure[d]
and Figure 3]

UNSAT Formulas: GSM

Q: If a rectangle has a width of 42 inches and an area of 1638, how many rectangles of the same size would
reach a length of 390 inches?

rectangle_width = 42

rectangle_area = 1638

rectangle_length = 390

rectangle_length = rectangle_area / rectangle_width
rectangles_needed = rectangle_length / rectangle_width
result = rectangles_needed

solve(result)

Q: Jason’s dog has a tail that’s half the length of its body, and a head that’s 1/6 the length of its body. If the
dog is 30 inches long overall, how long is its tail?

dog_length = 30

tail_length = Variable()

head_length = Variable()

dog_length = tail_length + head_length
tail_length = dog_length x 1 / 2
head_length = dog_length x 1 / 6
result = tail_length

solver(result)

Figure 3: Examples of UNSAT formulas from GSM. Both examples are generated by
code-davinci-002. UNSAT occurs when LLMs misunderstand the problem and output conflict-
ing constraints (highlighted in red).

AMBIG Formulas: GSM

Q: The sum of the three numbers is 500. If the first number is 200, and the value of the second number is
twice the value of the third number, find the value of the third number.

numl = 200

num2 = Variable()
num3 = Variable()
num2 = num3 * 2

total = numl + num2 + num3
result = num3
solve(result)

Q: The total for the sum and product of Elvie’s age and Arielle’s age are 131. If Elvie’s age is 10, how old is
Arielle?

elvie_age = 10

arielle_age = Variable()

sum_age = elvie_age + arielle_age
product_age = elvie_age * arielle_age
total_age = sum_age + product_age
result = arielle_age

solve(result)

Figure 4: Examples of AMBIG solutions from GSM. Both examples are generated by
code-davinci-002. The ambiguous formulas are under-constrained due to failure in encoding certain
constraints specified in the problem (highlighted in red), resulting in multiple possible answers.

12

UNSAT Formulas: CLUTRR

Arlene and her husband Jeff went on a cruise. They had a wonderful time. Stephanie s father Jason loves his
little princess even though she gets into a lot of trouble at school. Gloria’s mother Ruth and brother Jeff were
working in the kitchen, preparing soup. Stephanie, Ruth’s daughter, was working outside in the garden.

Q: How is [Jason] related to [Arlene]?

[Arlene] and her husband [Jeff] went on a cruise. They had a wonderful time.
relation(Arlene, Jeff) = (wife, husband)

[Stephanie]’s father [Jason] loves his little princess even though she gets into a lot of trouble at school.
relation(Stephanie, Jason) = (daughter, father)

[Gloria]’s mother [Ruth] and brother [Jeff] were working in the kitchen, preparing soup.
relation(Gloria, Ruth) = (daughter, mother)

relation(Gloria, Jeff) = (daughter, brother)

[Stephanie], [Ruth]’s daughter, was working outside in the garden.
relation(Stephanie, Ruth) = (daughter, mother)

How is [Jason] related to [Arlene]?

solve(relation(Jason, Arlene))

AMBIG Formulas: CLUTRR

Kirk loves talking to his grandfather Stanley on the phone. Paul’s brother, Kirk, recently made it into town.
Paul and his son Michael went to look at cars. Paul ended up buying the Mustang.
Q: How is [Stanley] related to [Michael]?

[Kirk] loves talking to his grandfather [Stanley] on the phone.

relation(Kirk, Stanley) = (grandson, grandfather)

[Paul]s brother, [Kirk], recently made it into town.

relation(Paul, Kirk) = (brother, brother)

[Paul] and his son [Michael] went to look at cars.

relation(Paul, Michael) = (father, son) note: Michael is Kirk’s son, not Paul’s son
How is [Stanley] related to [Michael]?

solve(relation(Stanley, Michael))

Figure 5: An example of UNSAT formulas (top) and an example of AMBIG formulas (bottom) from
CLUTRR. Both happen when the LLM misparses a constraint (highlighted in red). In particular,
ambiguous formulas usually occur when the language description itself is highly ambiguous (see the
note in the ambiguous formulas for an example).

13

E.2 [Examples of Incorrect Answers

We show examples where the SAT solver successfully returns an answer, but the answer is incorrect
in Figure[6]

Examples of Incorrect Answers: GSM

Q: Martin rings the small bell 4 times more than 1/3 as often as the big bell. If he rings both of them a
combined total of 52 times, how many times does he ring the big bell?

small_bell_rings = Variable()

big_bell_rings = Variable()

total_bell_rings = 52

small_bell_rings = big_bell_rings x 1 / 3 * 4
total_bell_rings = small_bell_rings + big_bell_rings
result = big_bell_rings

solve(result)

Q: Jonathan was sad to learn he needed 2 more toys than he already had to have enough toys to make a sorted
play set five times larger than James’s play set, which had 80 toys. How many toys does Jonathan currently
have?

james_toys = 80

jonathan_toys = Variable()
jonathan_toys_needed = james_toys * 5 + 2
result = jonathan_toys_needed - 2
solve(result)

Examples of Incorrect Answers: CLUTRR

Donald and Russell are brothers. Jason is father of their father.
Q: How is [Russell] related to [Jason]?

[Donald] and [Russell] are brothers.
relation(Donald, Russell) = (brother, brother)
[Jason] is father of their father

relation(Jason, Donald) = (father, son)
relation(Jason, Russell) = (father, son)

How is [Russell] related to [Jason]?
solve(relation(Russell, Jason))

Figure 6: Two examples of incorrect answers from GSM (top) and an example of incorrect answer
from CLUTRR (bottom). This occurs when LLMs output incorrect constraints (highlighted in red) but
the incorrect formulas can still derive a non-ambiguous answer.

14

F Examples of Execution Errors and Planning Errors Made by COTSOLVER

We show examples of execution errors and planning errors produced by COTSOLVER in Figure
Figure[§] and Figure[9]

As shown in Figure [/l LLMs can make errors when executing arithmetic operators, resulting in
execution errors. While introducing an interpreter (PROGLM) can help fix such execution errors,
it is not effective for handling planning errors in Figure[8] which involves manipulating symbolic
variables to determine a chain of arithmetic equations leading to the final answer.

We note that for CLUTRR, the atomic function is applying a set of transitivity rules that infer the
relation between A and C based on the relation between A and B and the relation between B and C (e.g.,
A’s son is B, B’s daughter is C. So A’s granddaughter is C). So the an execution error in
CLUTRR refers to incorrect outputs when applying transitivity rules (see the top section of Figure[J).
The set of transitivity rules we use are provided in [20, 37].

Execution Errors of COTSOLVER: GSM

Q: Carly is thinking about buying a wallet that costs 22 and a purse that costs 3 less than four times the cost
of the wallet. What is the combined cost of both items?

wallet_cost = 22

purse_cost = Variable()

purse_cost = wallet_cost *x 4 - 3

total_cost = wallet_cost + purse_cost

result = total_cost

We know purse_cost = wallet_cost * 4 - 3

So total_cost = wallet_cost + purse_cost = 22 + (22 * 4 - 3) =22 + 87 = 109
result = total_cost = 109

The answer is 109

Q: A person borrowed an amount of money for a year at an interest rate of 12%. If the total interest is $1500,
what was the original borrowed amount?

interest_rate = 12

interest_total = 1500

borrowed_amount = Variable()

interest_total = borrowed_amount * interest_rate / 100 result = borrowed_amount

We know interest_total = borrowed_amount * interest_rate / 100

So borrowed_amount = interest_total / interest_rate * 100 = 1500 / 12 * 100 = 12500
/ 12 = 1041.67

result = borrowed_amount = 1041.67

The answer is 1041.67

Figure 7: Examples of execution errors made by COTSOLVER on arithmetic reasoning tasks. Both
examples are generated by code-davinci-002, which makes mistakes when calculating the final value
of equations.

15

Planning Errors of COTSOLVER: GSM

Q: Griffin had 24 french fries, but Kyle took 5 of them. Billy took twice as many as Kyle. Ginger gave Griffin
a handful of her fries, and then Colby took from Griffin 3 less than the number of fries that Kyle had taken. If
in the end Griffin had 27 fries, how many fries did Ginger give Griffin?

fries_initial = 24

kyle_took = 5

billy_took = kyle_took * 2

ginger_gave = Variable()

colby_took = kyle_took - 3

fries_after = 27

fries_after = fries_initial - kyle_took - billy_took + ginger_gave - colby_took
result = ginger_gave

Solve the value of result

We know fries_after = fries_initial - kyle_took - billy_took + ginger_gave - colby_took
So ginger_gave = fries_after - fries_initial + kyle_took + billy_took - colby_took =
27 - 24 +5 + 10 -2 =16

result = ginger_gave = 16

The answer is 16

Q: The combined age of Peter, Paul and Jean is 100 years old. Find the age of Peter knowing that Paul is 10
years older than John and that Peter’s age is equal to the sum of Paul and John’s age.

john_age = Variable()

total_age = 100

paul_age = john_age + 10

peter_age = paul_age + john_age

total_age = peter_age + paul_age + john_age

result = peter_age

We know paul_age = john_age + 10, and peter_age = paul_age + john_age. So peter_age
= john_age + 10 + john_age = 2 * john_age + 10

We also know total_age = peter_age + paul_age + john_age = 2 * john_age + 10 + john_age
+ 10 = 3 * john_age + 20

Therefore, john_age = (total_age - 20) / 3 = (100 - 20) / 3
peter_age = 2 * john_age + 10 = 2 * 26.67 + 10 = 53.33 + 10
result = peter_age = 63.33

The answer is 63.33

80 / 3 = 26.67
63.33

Figure 8: Examples of planning errors made by COTSOLVER from GSM. Both examples are
generated by code-davinci-002. In the first example, LLM fails to flip the sign of colby_took. In
the second example, the model drops an occurrence of john_age when expanding out the formula.
In both case, LLM fails to arrange the symbols to derive a chain of numeric equations that gives the
correct answer.

16

Execution Errors of COTSOLVER: CLUTRR

[James] was looking forward to dinner with his granddaughter, [Joanne].
relation(James, Joanne) = (grandfather, granddaughter)

[Helen] went to her son [Leo]’s House

relation(Helen, Leo) = (mother, son)

[Gene] bought gifts for his lovely sister, [Joanne]

relation(Gene, Joanne) = (brother, sister)

[Kecia] wanted to visit an art museum, so she asked her father, [James] to take her.
relation(Kecia, James) = (daughter, father)

[Sharon] and her sister, [Kecia], frequently bicker. However, they always make up quickly.
relation(Sharon, Kecia) = (sister, sister)

[Leo] was so happy for his brother, [Gene], getting a promotion.

relation(Leo, Gene) = (brother, brother)

How is [Sharon] related to [Helen]?

answer = relation(Sharon, Helen)

Solve the problem

Helen’s son is Leo, and Leo’s brother is Gene, so Helen’s son is Gene.

Helen’s son is Gene, and Gene’s sister is Joanne, so Helen’s daughter is Joanne.

Helen’s daughter is Joanne, and Joanne’s father is James, so Helen’s son is James.

Helen’s son is James, and James’s daughter is Kecia, so Helen’s granddaughter is Kecia.
Helen’s granddaughter is Kecia, and Kecia’s sister is Sharon, so Helen’s granddaughter is Sharon.
The answer is granddaughter.

Planning Errors of COTSOLVER: CLUTRR

[Rosa] took her daughter [Melissa] to the park.

relation(Rosa, Melissa) = (mother, daughter)

[Melissa] was sad her sister [Annie] could not join.

relation(Melissa, Annie) = (sister, sister)

[Lisa] is having a great day at the playground with her mother [Rosa] and [Rosa]’s sister [Ruth].
relation(Lisa, Rosa) = (daughter, mother)

relation(Rosa, Ruth) = (sister, sister)

[Rosa] asked her daughter, [Lisa], if she would like to go to a movie with her on Saturday night.
relation(Rosa, Lisa) = (mother, daughter)

How is [Ruth] related to [Annie]?

answer = relation(Ruth, Annie)

Solve the problem

Rosa’s daughter is Lisa, and Lisa’s mother is Rosa, so Rosa’s mother is Rosa.

Rosa’s mother is Rosa, and Rosa’s sister is Ruth, so Rosa’s aunt is Ruth.

Rosa’s aunt is Ruth, and Rosa’s daughter is Melissa, so Rosa’s niece is Melissa.

Rosa’s niece is Melissa, and Melissa’s sister is Annie, so Rosa’s niece is Annie.

The answer is niece.

Figure 9: Examples of planning errors made by COTSOLVER on CLUTRR. We omit questions for
brevity. Both examples are generated by code-davinci-002. In the first example, the model outputs an
incorrect value when applying the transitivity rule marked in red (correct output should be husband).
In the second example, the model comes up with an incorrect procedure.

17

G Prompt Examples

We show one or two exemplars in the prompt for each dataset. We list prompts for PROGLM for
comparison.

Prompts for GSM and GSM-SYS

SATLM

Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops
did Jason give to Denny?

jason_lollipops_initial = 20

lollipops_given = Variable()

jason_lollipops_after = 12

jason_lollipops_after = jason_lollipops_initial - lollipops_given
result = lollipops_given

solve(result)

Q: Jeff bought 6 pairs of shoes and 4 jerseys for $560. Jerseys cost 1/4 price of one pair of shoes. Find the
shoe’s price total price.

shoes_num = 6
jerseys_num = 4

total_cost = 560

shoes_cost_each = Variable()

jerseys_cost_each = Variable()

shoes_cost_each * shoes_num + jerseys_cost_each * jerseys_num = total_cost
jerseys_cost_each = shoes_cost_each *x 1 / 4

shoes_cost_total = shoes_cost_each * shoes_num

result = shoes_cost_total

solve(result)

PROGLM from [10]

Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops
did Jason give to Denny?

jason_lollipops_initial = 20

jason_lollipops_after = 12

denny_lollipops = jason_lollipops_initial - jason_lollipops_after
result = denny_lollipops

return result

Q: Jeff bought 6 pairs of shoes and 4 jerseys for $560. Jerseys cost 1/4 price of one pair of shoes. Find the
shoe’s price total price.

shoes_num = 6

jerseys_num = 4

total_cost = 560

jersey_shoes_cost_ratio =1 / 4

shoes_cost_each = total_cost / (shoes_num + jerseys_num * jersey_shoes_cost_ratio)
shoes_cost_total = shoes_cost_each * shoes_num

result = shoes_cost_total

return result

Figure 10: Prompt (excerpt) used for GSM and GSM-SYs.

18

Prompts for LSAT

SATLM

Nine different treatments are available for a certain illness: three antibiotics—F, G, and H—three dietary
regimens—M, N, and O—and three physical therapies—U, V, and W. For each case of the illness, a doctor
will prescribe exactly five of the treatments, in accordance with the following conditions: If two of the
antibiotics are prescribed, the remaining antibiotic cannot be prescribed. There must be exactly one dietary
regimen prescribed. If O is not prescribed, F cannot be prescribed. If W is prescribed, F cannot be prescribed.
G cannot be prescribed if both N and U are prescribed. V cannot be prescribed unless both H and M are
prescribed.

Question: If O is prescribed for a given case, which one of the following is a pair of treatments both of which
must also be prescribed for that case?

AFM®B)G,VICON,UD)U,V(E)U, W

treatments = [F, G, H, M, N, 0, U, V, W]

antibiotics = [F, G, H]

dietary_regimens = [M, N, 0]

physical_therapies = [U, V, W]

prescribed = Function(treatments, bool)
Count([t:treatments], prescribed(t)) ==
Count([a:antibiotics], prescribed(a)) <= 2
Count([d:dietary_regimens], prescribed(d)) ==
Implies(Not(prescribed(0)), Not(prescribed(F)))
Implies(prescribed(W), Not(prescribed(F)))
Implies(And(prescribed(N), prescribed(U)), Not(prescribed(G)))
Implies(prescribed(V), And(prescribed(H), prescribed(M)))

solve(Implies(prescribed(0), And(prescribed(U), prescribed(V)))) # (A)
solve(Implies(prescribed(0), And(prescribed(G), prescribed(V)))) # (B)
solve(Implies(prescribed(0), And(prescribed(N), prescribed(U)))) # (C)
solve(Implies(prescribed(0), And(prescribed(U), prescribed(V)))) # (D)
solve(Implies(prescribed(0), And(prescribed(U), prescribed(W)))) # (E)

CoOT (annotated by our authors)

Nine different treatments are available for a certain illness: three antibiotics—F, G, and H—three dietary
regimens—M, N, and O—and three physical therapies—U, V, and W (omitted, see above)

Question: If O is prescribed for a given case, which one of the following is a pair of treatments both of which
must also be prescribed for that case?

A FM®B)G,VICON,UD)U,V(E)U, W

Let’s first analyze the conditions. We know there must be exactly one dietary regimen
prescribed. If O is a prescribed dietary regimen, then M and N must not be prescribed.
We know V cannot be prescribed unless both H and M are prescribed, so V cannot be
prescribed.

Let’s consider option (A). M must not be prescribed. This option is False.

Let’s consider option (B). V cannot be prescribed. This option is False.

Let’s consider option (C). N must not be prescribed. This option is False.

Let’s consider option (D). V cannot be prescribed. This option is False.

Let’s consider option (E). Let’s assume U is not prescribed. Because exactly 5 of the
treatments will be prescribed, they must be F, G, H, 0, and W. In this way both F and
W are prescribed, which contradicts the condition that if W is prescribed, F cannot be
prescribed. So U must be prescribed. We can prescribe G, H, 0, U, W. This option is
True.

So the answer is (E).

Figure 11: Prompt (excerpt) used for LSAT. Another example can be found in Figure ??. Several of
our authors authored different CoT prompts, leading to similar performance (ranging from 20% to
22%).

19

Prompts for BOARDGAMEQA

SATLM

A few players are playing a boardgame. The current state of the game is as follows. The gecko has 13 friends,
and hates Chris Ronaldo. And the rules of the game are as follows. Rulel: If the gecko has more than 8
friends, then the gecko does not proceed to the spot that is right after the spot of the bat. Rule2: Regarding
the gecko, if it is a fan of Chris Ronaldo, then we can conclude that it does not proceed to the spot that is
right after the spot of the bat. Rule3: If something does not proceed to the spot right after the bat, then it does
not give a magnifier to the swordfish.

Q: Based on the game state and the rules and preferences, does the gecko give a magnifier to the swordfish?

If the gecko has more than 8 friends, then the gecko does not proceed to the spot
that is right after the spot of the bat.

Implies(has_more_than_8_friends(gecko), Not(proceed_to_spot_right_after(gecko, bat)))
Rule2: Regarding the gecko, if it is a fan of Chris Ronaldo, then we can conclude
that it does not proceed to the spot that is right after the spot of the bat.
Implies(is_fan_of_chris_ronaldo(gecko), Not(proceed_to_spot_right_after(gecko, bat)))
Rule3: If something does not proceed to the spot right after the bat, then it does
not give a magnifier to the swordfish.

ForAll([x], Implies(Not(proceed_to_spot_right_after(x, bat)), Not(give_magnifier(x,
swordfish))))

The current state of the game is as follows. The gecko has 13 friends, and hates
Chris Ronaldo.
The gecko has 13 friends.

has_more_than_8_friends(gecko) == True
The gecko hates Chris Ronaldo.
is_fan_of_chris_ronaldo(gecko) == False

question: does the gecko give a magnifier to the swordfish?
solve(give_magnifier(gecko, swordfish))

CoT from Kazemi et al. [[14]]

A few players are playing a boardgame. The current state of the game is as follows. The gecko has 13 friends,
and hates Chris Ronaldo. And the rules of the game are as follows. Rulel: If the gecko has more than 8
friends, then the gecko does not proceed to the spot that is right after the spot of the bat. Rule2: Regarding
the gecko, if it is a fan of Chris Ronaldo, then we can conclude that it does not proceed to the spot that is
right after the spot of the bat. Rule3: If something does not proceed to the spot right after the bat, then it does
not give a magnifier to the swordfish.

Q: Based on the game state and the rules and preferences, does the gecko give a magnifier to the swordfish?

A: We know the gecko has 13 friends, 13 is more than 8, and according to Rulel "if the gecko has more than
8 friends, then the gecko does not proceed to the spot right after the bat", so we can conclude "the gecko does
not proceed to the spot right after the bat". We know the gecko does not proceed to the spot right after the
bat, and according to Rule3 "if something does not proceed to the spot right after the bat, then it doesn’t give
a magnifier to the swordfish", so we can conclude "the gecko does not give a magnifier to the swordfish". So
the statement "the gecko gives a magnifier to the swordfish" is disproved. The answer is no.

Figure 12: Prompt (excerpt) used for BOARDGAMEQA.

20

Prompts for CLUTRR

SATLM

Dorothy took her daughter Michelle and her mother Gabrielle car shopping.

Q: How is [Michelle] related to [Gabrielle]?

[Dorothy] took her daughter [Michelle] and her mother [Gabrielle] car shopping.
relation(Dorothy, Michelle) = (mother, daughter)

relation(Dorothy, Gabrielle) = (daughter, mother)

How is [Michelle] related to [Gabrielle]?

solve(relation(Michelle, Gabrielle))

Teresa and her brother Ellis were having a wonderful time at Disneyland. Ellis asked his grandmother, Molly,
to read him a bedtime story. Molly read him Hansel & Gretel, which the boy always loved. Sandra is married
to Thomas, the couple welcomed Teresa into the world.

Q: How is [Molly] related to [Sandra]?

[Teresa] and her brother [Ellis] were having a wonderful time at Disneyland.
relation(Teresa, Ellis) = (sister, brother)

[Ellis] asked his grandmother, [Molly], to read him a bedtime story.

relation(Ellis, Molly) = (grandson, grandmother)

[Sandra] is married to Thomas, the couple welcomed [Teresa] into the world.
relation(Sandra, Teresa) = (mother, daughter)

How is [Molly] related to [Sandral?

solve (relation(Molly, Sandra))

PROGLM from [20]

Dorothy took her daughter Michelle and her mother Gabrielle car shopping.

Q: How is [Michelle] related to [Gabrielle]?

To answer this question, we write a program to answer the following subquestions:

1. How is [Michelle] related to [Dorothy]? (independent, support: "[Dorothy] took
her daughter [Michelle] and her mother [Gabrielle] car shopping.”)

relation(Michelle, Dorothy) = daughter

2. How is [Dorothy] related to [Gabrielle]? (independent, support: "[Dorothy] took
her daughter [Michelle] and her mother [Gabrielle] car shopping.”)

relation(Dorothy, Gabrielle) = daughter

3. Final answer: How is [Michelle] related to [Gabrielle]? (depends on 1, 2)

relation(Michelle, Gabrielle) = relation(Michelle, Dorothy) @ relation(Dorothy,
Gabrielle)

Teresa and her brother Ellis were having a wonderful time at Disneyland...... (omitted, see above)

Q: How is [Molly] related to [Sandra]?

To answer this question, we write a program to answer the following subquestions:
1. How is [Molly] related to [Ellis]? (independent, support: "[Ellis] asked his
grandmother, [Molly], to read him a bedtime story."”)

relation(Molly, Ellis) = grandmother

2. How is [Ellis] related to [Teresal? (independent, support: "[Teresal and her
brother [Ellis] were having a wonderful time at Disneyland.")

relation(Ellis, Teresa) = brother

3. How is [Teresa] related to [Sandral? (independent, support: "[Sandral is married
to Thomas, the couple welcomed [Teresal] into the world.")

relation(Teresa, Sandra) = daughter

4. Final answer: How is [Molly] related to [Sandral? (depends on 1, 2, 3)
relation(Molly, Sandra) = relation(Molly, Ellis) @ relation(Ellis, Teresa) @
relation(Teresa, Sandra)

Figure 13: Prompt (excerpt) used for CLUTRR.

21

Prompts for PROOFWRITER

SATLM

Here are some facts and rules:

If someone visits the squirrel and the squirrel visits the rabbit then they are round. All round people are not
kind. If someone is round then they chase the rabbit. If someone is red and they chase the rabbit then they
visit the dog. If someone is red then they visit the squirrel. If someone visits the squirrel then the squirrel
visits the rabbit. the rabbit visits the dog.

the squirrel chases the bald eagle. the squirrel chases the rabbit. the dog sees the bald eagle. the bald eagle
does not chase the dog. the bald eagle is red. the squirrel is round. the rabbit does not see the dog. the rabbit
sees the bald eagle. the rabbit sees the squirrel. the dog does not see the rabbit. the rabbit does not visit the
bald eagle. the dog does not chase the bald eagle.

Q: The statement "The bald eagle visits the dog" is True or False?

ForAll([x], Implies(And(visit(x, squirrel), visit(squirrel, rabbit)), round(x)))
ForAll([x], Implies(round(x), Not(kind(x))))

ForAll([x], Implies(round(x), chase(x, rabbit)))

ForAll([x], Implies(And(red(x), chase(x, rabbit)), visit(x, dog)))
ForAll([x], Implies(red(x), visit(x, squirrel)))

ForAll([x], Implies(visit(x, squirrel), visit(squirrel, rabbit)))
chase(squirrel, rabbit)

see(dog, bald_eagle)

Not(chase(bald_eagle, dog))

red(bald_eagle)

round(squirrel)

Not(see(rabbit, dog))

see(rabbit, bald_eagle)

see(rabbit, squirrel)

Not(see(dog, rabbit))

Not(visit(rabbit, bald_eagle))

Not(chase(dog, bald_eagle))

solve(visit(bald_eagle, dog))

PROGLM adapted from [6]

Here are some facts and rules:
If someone visits the squirrel and the squirrel visits the rabbit then they are round...... (omitted, see above)
Q: The statement "The bald eagle visits the dog" is True or False?

the bald eagle is red.

bald_eagle_is_red = True

If someone is red then they visit the squirrel.
bald_eagle_visits_squirrel = bald_eagle_is_red

If someone visits the squirrel then the squirrel visits the rabbit.
squirrel_visits_rabbit = bald_eagle_visits_squirrel

If someone visits the squirrel and the squirrel visits the rabbit then they are round.
bald_eagle_is_round = bald_eagle_visits_squirrel and squirrel_visits_rabbit
If someone is round then they chase the rabbit.

bald_eagle_chases_rabbit = bald_eagle_is_round

If someone is red and they chase the rabbit then they visit the dog.
bald_eagle_visits_dog = bald_eagle_is_red and bald_eagle_chases_rabbit

Question: The statement "The bald eagle visits the dog” is True or False?
return bald_eagle_visits_dog

Figure 14: Prompt (excerpt) used for PROOFWRITER.

22

Prompts for SATcorsoLver

SATcotsorver for GSM

Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops
did Jason give to Denny?

jason_lollipops_initial = 20

lollipops_given = Variable()

jason_lollipops_after = 12

jason_lollipops_after = jason_lollipops_initial - lollipops_given

result = lollipops_given

solve(result)

Solve the value of result

We know jason_lollipops_after = jason_lollipops_initial - lollipops_given
So lollipops_given = jason_lollipops_initial - jason_lollipops_after = 20 - 12 = 8
result = lollipops_given = 8

The answer is 8

SAT corsorver for CLUTRR

Dorothy took her daughter Michelle and her mother Gabrielle car shopping.

Q: How is [Michelle] related to [Gabrielle]?

[Dorothy] took her daughter [Michelle] and her mother [Gabrielle] car shopping.
relation(Dorothy, Michelle) = (mother, daughter)

relation(Dorothy, Gabrielle) = (daughter, mother)

How is [Michelle] related to [Gabrielle]?

solve(relation(Michelle, Gabrielle))

Solve the problem

Gabrielle’s daughter is Dorothy, and Dorothy’s daughter is Michelle, so Gabrielle’s
granddaughter is Michelle.

The answer is granddaughter.

Figure 15: Prompt (excerpt) used for SATcorsoLver-

23

	Introduction
	SAT-Aided Language Models using Declarative Prompting
	Declarative Prompting
	Solving with a SAT Solver

	Experiments
	Analysis

	Related Work
	Conclusion
	Detailed Statistics of Datasets
	Details of the Setup
	Performance of Original CoT and ProgLM Prompts on Arithmetic Reasoning Datasets
	Extended Discussion on Concurrent Work
	Examples of Error Cases of SatLM
	Examples of Unsatisfiable and Ambiguous Formulas
	Examples of Incorrect Answers

	Examples of Execution Errors and Planning Errors Made by CoTSolver
	Prompt Examples

