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Abstract

ZX calculus is a graphical language for reasoning about linear maps. Maps are
represented as graphs, and reasoning amounts to graph rewrites. The main appli-
cations of ZX calculus are in quantum computation. We train small transformers
to simplify ZX graphs, i.e. perform resource optimisation of quantum circuits.
Preliminary experiments show that transformers can be trained to simplify CNOT
and Clifford circuits with high accuracy. These are the simplest kinds of ZX graphs,
in the sense that there exists an efficient rewrite strategy. We also show evidence
that transformers learn to simplify the more complex Clifford + T graphs, for
which in general there does not exist an efficient simplification algorithm.

Transformers [20] have proven their worth on problems of symbolic mathematics, such as integra-
tion [16], theorem proving [18], symbolic regression [6] and SAT solving [19]. In this paper, we
consider the optimization problem of quantum circuit compilation. Quantum computer programs are
composed as sequences of quantum assembly instructions known as gates, which are often depicted
using the circuit model. These circuits can be converted to graph-like ZX diagrams [8], which can
be represented as a labelled graph. Thanks to the ZX calculus [5], which is equipped with rewrite
rules that can transform between equivalent ZX diagrams, the optimization problem of minimizing
resources on quantum circuits can be framed as a graph rewriting problem.

The optimal compilation of quantum circuits involves solving hard problems: checking whether
two quantum circuits are exactly equivalent is QMA-complete [12] in the general case and the
optimisation of the makespan (or duration) of a quantum circuit is NP-complete [4]. Meanwhile,
there is a rich literature of using machine learning to tackle NP-hard problems [9]. In this paper,
we train transformers to learn the normal form of two classes of quantum circuits, CNOT and
Clifford circuits, that can be efficiently simulated in polynomial time [1]. Specifically, we learn the
full_reduce procedure from the pyzx library, which converts a quantum circuit into a graph-state
with local Cliffords, an intermediate representation that is also naturally amenable to measurement-
based quantum computation. The procedure can also receive Clifford + T circuits, an approximately
universal fragment of quantum circuits, though the output is not a normal form as the problem of
reducing the number of T gates in a quantum circuit is hard [2, 11]. By learning this function on
Clifford + T circuits, we effectively learn the “phase-teleportation" routine used by Kissinger and
Wetering to perform T -count reduction [15].

This is a first step towards developing transformer-based compilers for quantum computers using
methods inspired by machine translation.
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1 ZX Calculus

The circuit model of quantum computation enables the graphical expression of quantum states and
unitary evolutions, which can be more verbosely represented as vectors in C2n and matrices in
C2n×2n , respectively. They can be represented as ZX diagrams which are composed of tensors called
the Z and X ‘spiders’. X spiders can actually be decomposed into Z spiders with a Hadamard gate
on each leg of the spider, so can be regarded as “syntactic sugar". In this work, we will present the
graph-like ZX calculus. The semantics of the Z spider and the Hadamard gate using tensor index
notation are:

α
...

σ1

σn

= δ0σ1...σn + eiαδ1σ1...σn
σ1 σ2 =

1√
2
(1− 2δ1σ1σ2)

Spiders with 0 phase modulo 2π may be written without the phase label. Joining two wires cor-
responds to equating two indices and summing over them (tensor contraction). This allows us to
express common quantum gates in terms of ZX graphs in a fine-grained way:

H = S = π
2 T = π

4 Z = π

CNOT = CRz(2θ) =

θ

θ

−θ CZ =

The ZX calculus comes equipped with a set of local rewrite rules allowing reasoning about ZX graphs,
which allow one to transform, or rewrite, between ZX graphs that have an equal matrix representation.
Given a rule g ⇝ h, rewriting entails identifying a subgraph g and replacing the subgraph with h.
The rules are sound and complete, so graphs can be rewritten into one another if and only if they have
the same underlying matrix representation. For example, the ‘fusion’ rule dictates that two Z spiders
joined by a black wire can be combined into one Z spider whose phase is the sum of the phases of
the two spiders. The rules are:

βα
...

... =
...

...α + β α
... = α

...

βα
...

... = βα
...

... α
... = α + π

...

Using these rewrite rules, any graph-like ZX diagram can be converted to a simple graph containing
no graph loops or parallel edges. Furthermore, all vertices would be Z spiders and all edges would
be Hadamard edges (blue), except on the boundary where edges can be plain (black). Left and right
boundary edges correspond to the columns and rows of the matrix represented by a ZX diagram.
Here is an example of a ZX graph converted into a simple ZX graph:

α β

δ

=
α + β

δ

=
α + β + π

δ

2 Task Description

Duncan et al. [8] describe an efficient deterministic algorithm for rewriting ZX graphs, which was
further developed by Kissinger and Van de Wetering [15] to an algorithm for reducing the number of
T gates in a circuit. The key rewrite rules used in the algorithm are called ‘local complementation’
and ‘pivoting’. The simplification algorithm exhaustively matches and applies the two rules within the
graph. Since both rewrite rules strictly decrease the number of Z spiders, the algorithm is guaranteed
to terminate in polynomial time in the size of the graph.
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Lemma 1 (Local Complementation) The following rule holds in the ZX-calculus:

±π
2

α1 αn

...... ... = ...
α1∓ π

2

...
αn∓ π

2

α2

...
αn−1

...
α2∓ π

2

...
αn−1∓ π

2

...

...

∗

where the RHS is obtained from the LHS by toggling all of the connections between the neighbouring
vertices of the marked vertex, removing the marked vertex, and updating the phases as shown.

Lemma 2 (Pivoting) The following rule holds in the ZX-calculus:

jπ
α1

=
αn

β1

βn

γ1

γn

kπ

...

...

... αn + kπ

βn + (j + k + 1)π

...

β1 + (j + k + 1)π

γ1 + jπα1 + kπ

......

γn + jπ

...

...

...

...

...

...

...

... ...

...

...

...

∗ ∗

where the RHS is obtained from the LHS by first pairwise-toggling the connections between the
exclusive neighbourhood the first marked vertex {αi}, the exclusive neighbourhood the second
marked vertex {γi}, and the shared neighbourhood of the two marked vertices {βi}, then removing
the marked vertices and updating the phases as shown.

In this work, we focus on the task of simplifying quantum circuits from three families: CNOT circuits
(generated from {CNOT}), Clifford circuits (generated from {CNOT,H, S}), and Clifford + T
circuits (generated from {CNOT,H, T}). Note that the fusion of two T gates leads to a S gate.
When represented as ZX graphs, the spiders of CNOT circuits are decorated with phases that are
multiples of π. For Clifford and Clifford + T circuits, the phases are multiples of π

2 and π
4 respectively.

While CNOT and Clifford circuits can be efficiently simplified using local complementation and
pivoting [8], the task of optimally compiling these circuit classes is still important for near-term
quantum processors, as the noisiest gates are the 2-qubit entangling CNOT gates. The Clifford + T
gateset is approximately universal for quantum computation, and so it is not expected that there
exists an efficient algorithm to simplify any given Clifford + T ZX graph; if there were such an
algorithm, that would imply that it would be possible to efficiently and exactly simulate any quantum
computation, which is not believed to be the case [3, 7]. Still, simplification of the Clifford part of
Clifford + T ZX graphs can lead to cancellation of T -gates and hence in T -count reduction [15],
which is important for the fault-tolerant regime of quantum processors, where the T -gates dominate
the cost of quantum resources [10, 17].

3 Model settings

Generating datasets. All datasets are generated using the Python pyzx library [14]. Random circuits
C are generated (either CNOT, Clifford, or Clifford + T ), for a given depth d and number of qubits q
(typically, d = 15 and q = 10), and reduced into circuit R using the function full_reduce, which
implements the simplification strategy using local complementation and pivoting. The model is then
trained to reduce C into R (or an equivalent reduced circuit).

Encoding circuits. A circuit C is encoded by enumerating the number of nodes and edges, and then
listing the type and phase of all nodes, and the type and nodes of all edges. There are 2 possible edge
types, 4 possible node types, 8 possible phases. Our total vocabulary has no more than 100 tokens.
Random circuits C with 10 qubits and depth 15 are encoded as sequences of up to 360 tokens, and
their reduced form R as sequence of up to 210 tokens. Table A in Appendix A presents the maximal
length of the sequences representing C and R, for different values of q and d.

Models. We train sequence-to-sequence transformers [20] to minimize the cross-entropy between
model predictions of R and the correct solutions. We use models with 6 or 8 layers in the encoder
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and decoder, 512 dimensions and 8 attention heads. The optimizer is Adam [13] with a learning rate
of 10−4. For models with 8 layers or more, we use linear warmup over the first 10,000 optimization
steps, and inverse square root scheduling of the learning rate. Note that we are attempting to learn a
procedure with O(|V |3) time complexity using a model which has O(d ·n2+n ·d2) time complexity,
where n ≈ |V | is the sequence length and d is the embedding size. In the worst case, the sequence
length can be quadratic in the number of vertices for a fully connected graph.

Evaluation. Trained models are evaluated on a held-out test set, generated with the same techniques
and parameters as the training set, at the end of every epoch (300,000 examples). Whereas the
mathematical signification of model input and output is not considered during training (only the
correctness of predicted tokens matters), during evalutation the input and output sequences are
decoded, as circuits I and O. The syntactic correctness of O (that it is a valid graph) is verified. Then
we verify that the graph I + Adjoint(O) reduces to identity, i.e. that O is a reduction of I , and that O
has less nodes than the full reduction of I (as computed by full_reduce, and found in the test set).

4 Results

In a first set of experiments, we investigate the capability of Transformers to reduce Clifford circuits.
On this category of graphs, a polynomial time solution exists, and pyzx full_reduce returns a
minimal graph. A 6-layer transformer, with 512 dimensions and 8 attention heads, trained on circuits
with 10 qubits and a depth of 15 achieves 96.4% accuracy after 770 epochs (231 million examples).
In 88.4% of test cases, the circuit predicted is the output of full_reduce. In 8%, it is an equivalent
full reduction, with the same number of nodes. Model accuracy goes down as circuits become deeper:
89.1% for circuits of depth 20, 63.2% for depth 25, and 29.5% for depth 30.

Larger models bring little gain in accuracy: 8-layer transformers with 640 dimensions and 10 attention
heads achieve 95.4, 81.1 and 49.6% accuracy on circuits with 10 qubits and depth 15, 20 and 25. On
the other hand, 4-layer models only achieve 92.4, 71.9 and 35.7% accuracy. Table 1 presents results
for different depths and number of qubits (for 6 and 8-layer models). As a rule, models perform better
for circuits with large number of qubits, and worse as depth increases.

Table 1: Model accuracy for different depths and number of qubits. Best of three 6 and 8-layer models.

5 10 15 20 25 30 35 40
Depth
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ts

99.7 86.4 38.7 1.3 0.0 0.0 0.0 0.0

99.9 95.1 77.3 36.6 1.8 0.0 0.0 0.0

99.9 98.8 94.1 84.1 54.2 0.0 0.0 0.0

99.9 99.0 95.9 94.2 79.4 62.9 34.0 0.0

99.9 99.4 97.6 94.3 90.8 78.4 51.9 0.0

99.9 99.2 96.9 97.3 92.7 84.9 72.0 46.9

99.8 98.9 97.6 96.2 95.5 88.5 68.1 75.3
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In a second set of experiments, we compare 8-layer transformers performing full_reduce on three
classes of circuits: CNOT, Clifford, and Clifford + T . Performance is better for CNOT than Clifford
(unsurprisingly: CNOTs are included in Cliffords). For Clifford + T our models achieve over 90%
accuracy for all depths. These results suggest that transformers can deal with complex ZX circuits.
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Table 2: Model accuracy for different depths and circuit types. 8-layer models. 10 qubit circuits.

Depth CNOT Clifford Clifford + T

15 98.8 94.0 98.6
20 95.8 79.3 95.1
25 90.1 53.7 90.1

5 Discussion and future work

These initial experiments show that ZX graphs rewriting can be learned by transformers trained from
generated data, in the two simple cases (CNOT and Clifford) where an algorithm for calculating
the optimal solution exists (full_reduce). For the Clifford + T graphs, such an algorithm does
not exist, but our models can learn a “partial” reduction from a random graph into an equivalent,
simpler, graph. This suggests that the same techniques can be applied in the general case, where no
polynomial reduction algorithm is known.

In the general case, models would be trained to perform partial reductions, and trained models would
be called iteratively, or used in a reinforcement learning framework. Training sets for partial reduction
can be built by applying reduction rules, or their inverses, to a random graph, in a process reminiscent
of a random walk over equivalent ZX graphs. Transformers would then learn to translate the largest
graph into the smallest. We leave these experiments for future work.
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A Encoding length

depth
qubits 5 10 15 20 25 30 35 40

3 120 / 75 180 / 85 240 / 85 300 / 85 355 / 85 415 / 85 470 / 85 530 / 85
5 155 / 100 215 / 125 275 / 150 330 / 160 390 / 170 450 / 170 505 / 170 565 / 170
10 240 / 140 300 / 180 360 / 210 415 / 245 475 / 285 535 / 325 590 / 360 650 / 400
15 325 / 175 385 / 220 445 / 260 500 / 290 560 / 330 620 / 360 675 / 410 735 / 465
20 410 / 215 490 / 260 530 / 300 590 / 335 645 / 365 700 / 400 760 / 435 820 / 485
25 495 / 250 555 / 300 615 / 340 690 / 375 730 / 410 790 / 445 845 / 475 905 / 510
30 580 / 285 640 / 335 700 / 380 760 / 415 815 / 455 875 / 485 930 / 520 990 / 550

Table 3: Graph encoding sequence lengths for different qubits and depths. Maximum input (random) /
output (reduced) lengths, 99-th percentile of all graphs generated.

B full_reduce Example

Before full_reduce (150 vertices, 139 edges)
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c2 = cliffords(qubits=20, depth=35)
g2 = c2.copy()
to_gh(g2)
draw(g2)

g2_copy = g2.copy()
full_reduce(g2_copy)
draw(g2_copy)
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After full_reduce (73 vertices, 71 edges)
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Figure 1: A randomly generated 20 qubit, 35 depth Clifford circuit, before and after the full_reduce
procedure.
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