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Abstract

One of the central questions in control theory is achieving stability through feedback
control. This paper introduces a novel approach that combines Reinforcement
Learning (RL) with mathematical analysis to address this challenge, with a specific
focus on the Sterile Insect Technique (SIT) system. The objective is to find
a feedback control that stabilizes the mosquito population model. Despite the
mathematical complexities and the absence of known solutions for this specific
problem, our RL approach identifies a candidate solution for an explicit stabilizing
control. This study underscores the synergy between AI and mathematics, opening
new avenues for tackling intricate mathematical problems.1

1 Introduction

AI for mathematics often refers to automatic theorem proving, either in formal language [39, 31,
26, 40], or in natural language [27], usually using language models. This article takes a different
approach, presenting a Reinforcement Learning (RL) framework to solve a mathematical problem
from control theory. The goal is to help mathematicians by finding a candidate solution to the problem
in the spirit that checking a solution is often easier than finding it.

Control theory is about asking oneself: "if I can act on a system, what can I make it do?". In this
area of mathematics, the system in question is usually a described by a set of differential (or partial
differential) equations in which there is a component –called control– that can be chosen. One of
the main branches of this field, called stabilization, aims to find a way to make an equilibrium stable
by choosing this control as a function of the state of the system. This is called a feedback control.
Many mathematical techniques exist to solve this problem [14]. However, in some cases the current
mathematical theories are unable to find a successful feedback control. In this article we show that an
RL approach combined with a mathematical analysis can help to find new mathematical feedback
controls in such complicated cases.

We study a practical case: the SIT system, that models the control of insect pests (in particular
mosquito population). SIT stands for Sterile Insect Technique which consists in releasing sterilized
insects to reduce or eliminate a target population. Initially used in agriculture to control insect pests,
it is today employed in the vector-born disease fight against mosquitoes that carry illnesses such
as malaria and arboviruses [2, 4] and there is a great interest both in research and in practice to
understand which control to use [9, 8, 3]. A more detailed overview of the literature is given in
Appendix C. From a mathematical point of view, without any control, this system of differential
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equations has a globally stable undesired equilibrium with high population of insect pests, and an
unstable equilibrium with no insect pests, the zero equilibrium. The mathematical goal is to find a
feedback control such that the zero equilibrium is globally stable instead of the unwanted equilibrium.

The difficulties come from three reasons: showing global stability of dynamical systems (as opposed to
local stability) is a very challenging mathematical problem for which there are only few mathematical
tools; the system is not continuous, which is known in mathematics to bring some difficulties; we only
have a partial measurement of the state of the system (see Section 4.2 for more details). Because of
these three difficulties, finding a feedback control for this system is a mathematically open question.
With our approach we are able to derive an explicit mathematical feedback control to achieve the
global stability. While there is still no mathematical proof that this feedback control is a solution to
the problem, the numerical simulations strongly suggest that it is. We believe that this approach could
be generalized to other open problems in control theory and give a new impulse to their resolution.

2 Mathematical framework

The dynamical system we consider is the SIT model for pests, here mosquitoes, given by

Ė = βEF

(
1− E

K

)
−
(
νE + δE

)
E, (2.1)

Ṁ = (1− ν)νEE − δMM, (2.2)

Ḟ = ννEE
M

M +Ms
− δFF, (2.3)

Ṁs = u− δsMs, (2.4)

where E(t) ≥ 0 represents the mosquito density in the aquatic phase, M(t) ≥ 0 the wild adult male
density, F (t) ≥ 0 the density of adult feconded females, Ms(t) ≥ 0 the sterilized adult male density,
and u(t) ≥ 0, the control, is the density of sterilized males released at time t. We also denote the
number of unfertilized females by Fs(t) = F (t)Ms(t)/M(t). All SIT model notation is defined in
Appendix A as well as the parameters we used.

When u(t) = Ms(t) = 0 for any t ≥ 0, the system (2.1)–(2.3) has a unique globally asymptot-
ically stable equilibrium (E(t),M(t), F (t)) ≡ (E∗,M∗, F ∗) where E∗, M∗ and F ∗ are large
constant values. This corresponds to the situation where mosquitoes reproduce freely. The state
(E(t),M(t), F (t)) ≡ (0, 0, 0) is also an equilibrium, albeit an unstable one. The mathematical
problem is to find u(t) of the form

u(t) = f(M(t) +Ms(t), F (t) + Fs(t)), (2.5)

where f ∈ L∞(R2) such that the zero equilibrium (0, 0, 0) is globally asymptotically stable and Ms

is asymptotically small, meaning there exists c ∈ R+ such that

lim
t→+∞

∥u(t)∥ = c < U∗ :=
KβEν(1− ν)ν2Eδs
4(δE + νE)δF δM

(
1− δF (νE + δE)

βEννE

)2

, (2.6)

and the equilibrium (0, 0, 0, c/δs) of system (2.1)–(2.4) is globally asymptotically stable (see Defini-
tion 2.1 below).

Definition 2.1. The equilibrium (0, 0, 0, c/δs) of the system (2.1)–(2.4) is globally asymptotically
stable if, for any initial condition (E0,M0, F0,Ms,0) there exists a unique solution (E,M,F,Ms)
on [0,+∞) to the system (2.1)–(2.4) and for any ε > 0 there exists δ > 0 such that

∥(E0,M0, F0,Ms,0 − c/δs)∥ ≤ δ =⇒ ∥(E(t),M(t), F (t),Ms(t)− c/δs)∥ ≤ ε, ∀t ∈ [0,+∞),
(2.7)

lim
t→+∞

∥(E(t),M(t), F (t),Ms(t)− c/δs)∥ = 0, (2.8)

The form constraint (2.5) corresponds to a practical limitation: M +Ms and F + Fs are the total
number of males and females which are typically what can be measured in practice (see [2]).
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Remark 2.1 (Constant control). The point of the constraint (2.6) is to avoid a constant control.
Indeed, for a constant control u(t) ≡ Ū , if Ū > U∗ then the equilibrium (0, 0, 0, U∗/δs) is globally
asymptotically stable (see [3]). In practice, one would like c to be as small as possible in (2.6). For
the control we find in Section 5 with our approach, the value of c is much smaller than U∗. In fact,
we even show a simplified version of the control where c can be chosen arbitrarily small.
Remark 2.2 (Optimal decay rate). Assume that E(0) ≤ K. Then, whatever is the control u(t) ≥ 0,
for every time t ≥ 0, E(t) ≤ K and

E(t) ≥ Ẽ(t), M(t) ≥ M̃(t), F (t) ≥ F̃ (t), (2.9)

where (Ẽ, M̃ , F̃ ) is the solution to the Cauchy problem

˙̃E = βEF̃

(
1− Ẽ

K

)
−
(
νE + δE

)
Ẽ, ˙̃M = (1− ν)νEẼ − δMM̃, ˙̃F = −δF F̃ , (2.10)

(Ẽ(0), M̃(0), F̃ (0)) = (E(0),M(0), F (0)). (2.11)

It would be interesting to see if one can get with suitable output feedback laws (vanishing or small at
the origin) a decay rate close to the one imposed by (2.9), i.e.

E(t) ≃ Ẽ(t), M(t) ≃ M̃(t), F (t) ≃ F̃ (t). (2.12)

(Note that it is possible to get (2.12) by taking u constant and large, depending on
(E(0),M(0), F (0)).) This would be particularly useful in the case where the insect under study
reproduces both sexually and asexually: indeed, this would give the best way to reduce the sexual
reproduction part as much as possible by output feedback laws (vanishing or small at the origin).

3 Related works

From a control theory perspective, several mathematical approaches have already been used in the
literature to treat this problem either for the complete system (2.1)–(2.4) or for reduced models, using
classical tools in control theory (control Lyapunov functions, LaSalle invariance principle, maximum
principle, monotone dynamical systems, etc. [3, 1, 7, 5, 6, 15]). See Appendix C for more details. In
particular, a feedback control was found in [1], however this control depends on the four variables
(E,M,F,Ms) and not only on the observable quantities M +Ms and F + Fs. As of now, there is
no known control depending only on M +Ms and F + Fs.

Over the past few years, RL has emerged as a powerful approach for control, in a wide range of
domains and applications (see Appendix C). However, RL techniques, while powerful for decision-
making, inherently provide control mechanisms that are discrete and numerical in nature. From a
more rigorous mathematical point of view, these mechanisms often do not translate directly into
analytical feedback control formulas. Aiming to address this limitation, in our work, we blend RL
methodologies with mathematical analysis to extract an explicit mathematical control.

Using AI tools to help mathematicians by giving them an insight or a candidate solution was
considered in [17] using a different framework. Other approaches aimed to teach a model to guess
mathematical solutions to a problem [25, 13]. However, in these approaches the solution of the
mathematical problems involved are already known.

4 Method

4.1 Our approach

Our proposed approach works in four steps, summarized in Figure 1:

(Step 1) Discretize the equations in a numerical scheme and use those dynamics to create a train-
ing environment by implementing the observations, actions, and rewards described in
Section 4.2.

(Step 2) Train an RL model that learns to maximize the objective function we assign it through
many simulations and obtain a numerical control feedback based on this numerical scheme.
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Figure 1: Diagram representing the procedure by which we simulate our model in an environment
that is used to train an RL agent, whose policy we then convert into an explicit control.

(Step 3) Recover an explicit mathematical control from the numerical control feedback.
(Step 4) Perform several tests using different numerical schemes and discretizations to ensure that

the explicit control is efficient.

4.2 Reinforcement-Learning Framework

Reinforcement Learning (RL) trains agents to optimize long-term rewards in various environments
by maximizing the expected cumulative sum of rewards, denoted as J(πθ), where πθ is the policy,
often guided by neural network weights θ. Similar to minimizing a cost function −J(πθ) in control
theory, this can be modeled using a partially-observable Markov decision process (POMDP). The
observation space has two states: total males M +Ms and females F + Fs, as the individual states
E,M,F and Ms aren’t independently measurable in the real world. Observations are normalized
to [0, 1]. For better convergence, M +Ms and F + Fs, which can typically range from 0 to 100K,
are inputted to the neural network at varied scales and normalized. The single action at ranges
from [-1,1], remapped to u(t) ∈ [0, 10K] for model equations (2.1)–(2.4). To simplify training by
artificially reducing the horizon, each action is repeated for multiple simulation steps.

Finally, our optimization criterion takes the following form at time step t:

rt = c1∥E(t),M(t), F (t)∥2 + c2(t)∥Ms(t)∥2 with c2(t) =

{
c3 if t < 0.9T,

c3 + c4 otherwise.
Near the horizon’s end, specifically when 0.9T ≤ t ≤ T , we introduce a positive weight c4 to the
penalty on ∥Ms(t)∥2. This aids steer the RL training toward the desired asymptotic convergence of
the state. Parameters and more experiment details can be found in Appendix B.

5 Main Results

The trained RL model converges after around 10M steps to a numerical control that we represent
in Figure 2 as a function of M +Ms and F + Fs. Interestingly, we see that the plot of the control
in linear scale is not really informative (see Figure 2 left), suggesting it would be complicated to
have a good regression directly as a function of M +Ms and F + Fs. However, in logarithmic scale
the expression of the control seems much clearer (see Figure 2 right) and clearly has two identified
parts. In each of them the control seems to be close to a bang-bang control with a thin transition.
With a simple regression (see Figure 3) we approximate this numerical control with the explicit
mathematical control

ureg(M +Ms, F + Fs) =

{
uleft

reg(M +Ms, F + Fs) if M +Ms < M∗,

uright
reg (M +Ms, F + Fs) otherwise,

(5.1)

where u is defined on (0,+∞)2 and

uleft
reg =


umin if I1(F + Fs) > α2,

umax (α2 − I1) if I1 ∈ (α1, α2],

umax otherwise,
uright

reg =


umin if I2 > α2,

umax (α2 − I2) if I2 ∈ (α1, α2],

umax otherwise.

where

I1(x) = log(M∗)
log(x) and I2(x, y) = log(x)

log(y) , M∗ = 200, α1 = 3, α2 = 4, umax = 3 · 105 is im-
posed by physical constraints and umin can be chosen.
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Figure 2: Heatmap of the model’s action u as a function of M +Ms and F +Fs, in linear scale (left)
and logarithmic scale (right).

During training and evaluation the numerical feedback control includes a slight noise to enhance
robustness and exploration. Surprisingly, when tested with umin = 0, the mathematical control (5.1)
with a small additional noise η(t) exhibits asymptotic stability, whereas noise-free control does not,
displaying cyclic-like behavior (see Figure 3). The paradox arises from umin = 0. Introducing a
small positive value ε for this parameter is enough to obtain asymptotic stability. In the noisy control,
because of the condition u ≥ 0, umin + η(t) is positive in average, explaining the stabilization. More
details are given in Appendix D.1.

The efficiency of the feedback control (5.1) is illustrated in Appendix D on many numerical simula-
tions for a large array of initial conditions with different discretizations, suggesting that this nonlinear
control is indeed a solution to the mathematical problem considered. We recall that there is no known
solution to date for this mathematical problem. With this control, the system converges globally to
the equilibrium (E∗,M∗, F ∗,M∗

s ) = (0, 0, 0, λ) where λ = ε/δs and ε can be chosen much smaller
than the U∗ given in (2.6). A more detailed analysis of the result is given in Appendix D.

Using the candidate solution provided by the method, we simplified (5.1) and obtained a second
candidate feedback control given by

vreg(M +Ms, F + Fs) =

{
umin if log(M+Ms)

log(F+Fs)
> α2,

umax otherwise,
(5.2)

where α2 = 4 with the parameters of Table 1 and umax = 3 · 105 is still imposed. Interestingly,
not only is this control faster to converge (compare Tables 2 and 3) but additionally one can choose
umin = ε > 0 arbitrarily small. In Figure 5 we represent ∥E(t),M(t), F (t)∥ and u(t) as a function
of time for ε = 10−2, 1 and 5. We see that the curves of ∥E(t),M(t), F (t)∥ are very similar, the
main difference being that u(t) takes more time to converges to 0 as umin grows larger. Interestingly,
taking ε = 0 does not lead to the converges of the equilibrium, suggesting that there is a mathematical
bifurcation. Note that being able to take ε > 0 arbitrarily small is a much more powerful property
than the one given by (2.6).

6 Discussion and conclusion

We presented an RL framework to solve a type of mathematical problem in control theory, and we
used it to find an explicit candidate solution for the stabilization of the SIT system. In the future,
it would be interesting to use a regression to explicit the reward J as a function of the initial state
in order to obtain an explicit Lyapunov function which would show the asymptotic stability of the
system with the explicit control. Going further, this approach could be likely generalized to other
systems. This is an incentive to use more AI techniques to solve mathematical problems, especially
in control theory.
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A Mathematical system interpretation and parameters

In system (2.1)–(2.4), we assumed that all females are immediately fertilized when they emerge from
the pupal stage. The equation on F makes sense when we add the sterile male in which case only a
fraction of the females will be fertilized. The interpretation of the parameters are given below [3]:

• βE > 0 is the oviposition rate,
• δE , δM , δF > 0 are the death rates for eggs, wild adult males and fertilized females

respectively,
• νE > 0 is the hatching rate for eggs,
• ν ∈ (0, 1) the probability that a pupa gives rise to a female (and (1− ν) is, therefore, the

probability to give rise to a male),
• δs > 0 is the death rate of sterilized adult,
• K > 0 is the environmental capacity for eggs. It can be interpreted as the maximum density

of eggs that females can lay in breeding sites. Since here the larval and pupal compartments
are not present, it is as if E represents all the aquatic compartments in which case in this
term K represents a logistic law’s carrying capacity for the aquatic phase that also includes
the effects of competition between larvae.

Besides, we also assume that δs ≥ δM , which is usually considered as a biologically relevant assump-
tion [3] Typical values for these parameters can be found in a population of Aedes polynesiensis in
French Polynesia[36, 23, 33, 37, 12, 21, 22, 20] and are given in Table 1.

Parameter Name Value Interval Chosen Value Unity
βE Effective fecundity [7.46, 14.85] 8 Day−1

νE Hatching parameter [0.005, 0.25] 0.25 Day−1

δE Aquatic phase death rate [0.023, 0.046] 0.03 Day−1

δF Female death rate [0.033, 0.046] 0.04 Day−1

δM Males death rate [0.077, 0.139] 0.1 Day−1

δs Sterilized male death rate - 0.12 Day−1

ν Probability of emergence - 0.49
K Environmental capacity for eggs - 50000

Table 1: Parameters for the system (2.1)–(2.4).

B Experiment details

We train our RL policies using proximal policy optimization (PPO) [34], a state-of-the-art policy
gradient algorithm. We use the implementation of PPO provided in Stable Baselines 3 [32] (version
1.6.2, Python 3.8), a popular RL library that provides a collection of state-of-the-art algorithm
implementations, as well as various tools for RL research.

The models are trained for 10 million environment timesteps (or 7 billion simulation timesteps)
on 12 CPUs, which takes about 7 hours. During each iteration, we collect 12288 (1024 per CPU)
environment steps, then run 5 epochs of optimization with a batch size of 1024. The agent’s policy is
a fully-connected neural network with 2 hidden layers of 256 neurons each, with tanh non-linearities
between each layer, outputting the mean and standard deviation of a normal distribution that is then
used to sample the action. More formally, for a given observation vector, the neural network policy
outputs a mean µt and standard deviation σt and the action is sampled as at ∼ N (µt, σt). We train
with a learning rate of 3× 10−4, gamma factor γ = 0.99, and all other hyperparameters are left to
their default values.

We run each simulation for T = 1001 days (or 143 weeks), with a timestep dt = 0.01 days, and
each action is repeated 700 times, meaning that the environment horizon is 143 steps and a new
action is taken each week. For each simulation, the initial condition is uniformly sampled between
0 and 10K: E(0),M(0), F (0),Ms(0) ∼ U(0, 10K). For our reward function, we use coefficients
c1 = 0.1, c3 = 0.001 and c4 = 0.01.
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C Related works

From a mathematical point of view, several mathematical techniques have been used, either for this
model or reduced models. In particular, two reduced model have been considered: A two dimensional
model (2D-model) obtained by assuming that the dynamics of males and eggs are fast so that these
two populations can be assumed to be at equilibrium (see [3, (S1), page 231-232] or [16, (2)])
and a three dimensional model (3D-model) obtained by overlooking the non-adult stages (see[10,
(7a)-(7b)-(7c)]). These mathematical approaches have led to the following stabilizing feedback
controls:

• Stabilization using impulsive feedback controls for the 3D-model: [10, Theorem 6], and
[10, Theorem 7] for the case of sparse measurements. The case of vector migration is also
considered in [11].

• Stabilization using optimal feedback controls for the 2D-model: [3, Remark 4].
• Stabilization using the backstepping method: see [16] for the 2D-model and [1, Section 3.1]

for the complete model.
• Stabilization using simple linear feedback laws for which the stabilization for the complete

model is conjectured and proved for positively invariant subsets [1, Sections 3.2 and 3.3].

Our approach differs by using deep reinforcement learning to construct control feedback laws. In
the past few years, RL has emerged as a powerful approach for control, leveraging its ability to
learn near-optimal decision making strategies through interactions with an environment, and has
demonstrated remarkable successes across a wide range of domains and applications. In robotics, RL
has enabled machines to learn complex control tasks such as locomotion, manipulation, and dexterous
object handling [19, 29, 28]. In the realm of games, RL algorithms have achieved superhuman
performance in challenging domains like Go, chess, and StarCraft [35, 38]. Moreover, RL has
excelled in playing classic Atari games, surpassing human-level performance by learning directly
from pixel inputs [30]. RL can also excel in controlling ODE/PDE problems directly: [24] applies RL
to optimal control problems, [18] applies RL to a flow control problem modeled by PDEs. However
our approach differs from these by fitting an explicit mathematical control law using the learned
neural network. These remarkable achievements highlight the versatility and potential of RL as a
general-purpose approach for solving complex practical control problems in diverse domains.

D Results

D.1 Effect of the noise

During training and testing the numerical control feedback law includes by default a small noise. This
ensures some robustness of the control and a good exploration. We tested the mathematical control
we derived (given in (5.1)) with and without noise. To our surprise, the control with a small noise
does seem to ensure the asymptotic stability, whereas the control without any noise does not seem to.
Indeed, without noise, the control seems to have a cyclic behavior and never converges (see Figure
3 (left)). When adding a small noise, however, the stability is restored (see Figure 3 (right)). The
explication to this apparent paradox is that having exactly umin = 0 in the one of the branch of the
control given in (5.1) is apparently too strong to allow the model to converge completely. Replacing
the value with umin > 0 for a small umin (typically umin = 10) allows to stabilize the system without
noise (see Figure 3 (right)). In the system with noise, because the control u has to be positive, the
noise increases in average the effective value of umin of the control (5.1), which explains the apparent
stabilization. Note that (0, 0, 0, umin/δs) is an equilibrium of the system stabilized, which solves the
problem described in Section 5 provided that umin < U∗. Here, with the values of Table 1,

U∗ ≈ 1.6 105 while umin = 10,

which means that this control is a very good solution to the problem.

D.2 Effectiveness of the mathematical control

We test the candidate mathematical control (5.1) with random initial condition (E0,M0, F0,Ms,0) in
[0, 10K] to check the stability of the equilibrium (0, 0, 0, umin/δs). This is represented in Figure 4.
We also show the numerical values obtained and their variance in Table 2.

10



Figure 3: Heatmap of the regression model’s action u(M +Ms, F + Fs) as a function of total males
and total females. A state-space trajectory is plotted in red, with the dot indicating initial state and
the cross final state, for the heatmap only (left) and when a small noise µ ∼ N (0, 5) is added on top
of the action (right).

200 days 400 days 600 days 800 days
average |E|+ |M |+ |F | 50,801.64 8,020.47 96.25 0.60
variance |E|+ |M |+ |F | 45,422,159 4,012,119 1,394 0.02
maximum |E|+ |M |+ |F | 59,026.78 10,455.31 149.03 0.80
average |Ms| 2,207,795.88 693,675.84 16,743.12 50.27
variance |Ms| 53,101,242,728 13,102,504,436 41,355,608 81.24
maximum |Ms| 2,473,954.23 822,154.59 25,783.57 70.59

Table 2: Statistics over 100 simulations with random initial conditions in [0, 10K]4 using control ureg
(see (5.1)) with umin = 5 and umax = 300000 over a duration of 600 days.

200 days 400 days 600 days 800 days
average |E|+ |M |+ |F | 48,806.91 688.68 2.47 0.002
variance |E|+ |M |+ |F | 75,826,146 78,547.67 1.31 1.61× 10−6

maximum |E|+ |M |+ |F | 59,079.04 1,130.92 4.37 0.006
average |Ms| 2,500,000 129,308.46 2,204.39 41.67
variance |Ms| 3.07× 10−11 2,949,520,902 5,197,430.54 2.17× 10−7

maximum |Ms| 2,500,000 248,387.02 10,757.19 41.67
Table 3: Statistics over 100 simulations with random initial conditions in [0, 10K]4 using control vreg
(see (5.2)) with umin = 5 and umax = 300000 over a duration of 600 days.
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Figure 4: States and control vreg with umin = 5 and umax = 300000 over a duration of 1000 days for
100 simulations with random initial conditions in [0, 10K]4. Each color correspond to a simulation.
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Figure 5: Norm of the states ∥E(t),M(t), F (t)∥2 (blue) and control u(t) (red) as a function of time
for different values of umin (0, 0.001, 1, and 5 respectively from top to bottom) and umax = 300, 000,
over 2000 days and with the same initial condition.
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