
Teaching Arithmetic to Small Transformers

Anonymous Author(s)
Affiliation
Address
email

Abstract

Large language models like GPT-4 exhibit emergent capabilities across general-1

purpose tasks, such as basic arithmetic, when trained on extensive text data, even2

though these tasks are not explicitly encoded by the unsupervised, next-token3

prediction objective. This study investigates how even small transformers, trained4

from random initialization, can efficiently learn arithmetic operations such as addi-5

tion, multiplication, and elementary functions like square root, using the next-token6

prediction objective. We first demonstrate that conventional training data is not the7

most effective for arithmetic learning, and simple formatting changes can signif-8

icantly improve accuracy. This leads to sharp phase transitions as a function of9

training data scale, which, in some cases, can be explained through connections10

to low-rank matrix completion. Building on prior work, we then train on chain-11

of-thought style data that includes intermediate step results. Even in the complete12

absence of pretraining, this approach significantly and simultaneously improves13

accuracy, sample complexity, and convergence speed. We also study the interplay14

between arithmetic and text data during training and examine the effects of few-shot15

prompting, pretraining, and parameter scaling. Additionally, we discuss the chal-16

lenges associated with length generalization. Our work highlights the importance17

of high-quality, instructive data that considers the particular characteristics of the18

next-word prediction loss for rapidly eliciting arithmetic capabilities.119

1 Introduction20

Large language models like GPT-3/4, PaLM, LaMDA (Brown et al., 2020; Chowdhery et al., 2022;21

Thoppilan et al., 2022) have demonstrated general-purpose properties, often referred to as emergent22

abilities (Wei et al., 2022a), for a wide range of downstream tasks like language and code translation,23

compositional reasoning, and basic arithmetic operations (Webb et al., 2022; Nye et al., 2021; Wei24

et al., 2022b; Shi et al., 2022; Wang et al., 2022; Srivastava et al., 2022; Chen et al., 2023). What is25

perhaps surprising, is that these tasks are not explicitly encoded in the model’s training objective,26

which typically is an auto-regressive, next-token-prediction loss.27

Prior research (see Appendix 5) has delved into exploring these capabilities and how they emerge28

as the scale and of training compute, type of data, and model size vary (Wei et al., 2022a; Chung29

et al., 2022; Tay et al., 2022). Untangling the factors, however, remains challenging due to the data30

complexity and the variety of tasks examined. Driven by the curiosity to understand the factors31

that elicit these capabilities in next-token predictors, we set out to pinpoint the key contributors that32

accelerate the emergence of such abilities. These contributors may include the format and scale of33

data, model scale, the presence of pre-training, and the manner of prompting.34

1Our code is available at https://anonymous.4open.science/r/nanoGPT-25D2

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023) Workshop on MATH-
AI. Do not distribute.

https://anonymous.4open.science/r/nanoGPT-25D2

Figure 1: We investigate four data formatting approaches: (i) Plain: standard addition formatting (Appendix 6),
(ii) Reverse: reversing the output (Appendix 6), (iii) Simplified Scratchpad: recording the digit-wise sum and
carry-ons (Appendix 8), and (iv) Detailed Scratchpad: providing detailed intermediate steps (Appendix 8). We
train small decoder-only transformers from scratch on addition data in these formats. The results (right) highlight
the crucial role of data formatting in accuracy and sample efficiency. Plain never reaches 100% accuracy and the
sample complexity for the remaining methods steadily improves with the level of details in the data format.

To provide a more precise examination of these factors, our study is conducted in a controlled setting:35

we first focus on teaching arithmetic to small decoder-only transformer models, such as NanoGPT36

and GPT-2, when trained from random initialization. Starting with a model of 10.6M parameters and37

scaling up to 124M parameters, we use the standard autoregressive next-token prediction loss. Our38

objective is to understand if and to what degree these models can efficiently learn basic arithmetic39

operations like addition, subtraction, multiplication, square root, and sine, thereby providing a clearer40

lens through which to view the elicitation of emergent abilities. Below, we summarize our findings.41

Data format and sampling plays a significant role. We first observe that teaching a model addition42

(or any other operation) using standard addition samples, i.e., ‘A3A2A1 + B3B1B1 = C3C2C1’, is43

suboptimal, as it requires the model to evaluate the most significant digit C3 of the result first, which44

depends globally on all the digits of the two summands. By training on samples with reversed results,45

i.e., ‘A3A2A1 + B3B1B1 = C1C2C3’, we enable the model to learn a simpler function, significantly46

improving sample complexity (Appendix 6). Additionally, balanced sampling of different “variants”47

of addition, based on the number of carries and digits involved, further enhances learning. Even48

in this simple setting, we observe relatively sharp phase transitions from 0 to 100% accuracy as a49

function of the size of the training data. Although this may seem surprising, we observe that learning50

an addition map on n digits from random samples is equivalent to completing a low-rank matrix.51

This connection allows us to offer a reasonable explanation for such phase transitions (Appendix 7).52

Chain-of-thought data during training. Building on these findings, we then explore the potential53

benefits of chain-of-thought (CoT) data during training. This format includes step-by-step operations54

and intermediate results, allowing the model to learn the individual components of compositional55

tasks. This format is directly borrowed from related literature, e.g., Ling et al. (2017); Wei et al.56

(2022b); Zhou et al. (2022a,b). We find that CoT-type training data significantly improved learning in57

terms of both sample complexity and accuracy in agreement with CoT fine-tuning literature (Nye58

et al., 2021; Chung et al., 2022), but even in the complete absence of pretraining (Appendix 8). We59

conjecture that this is because breaking down the required compositional function to be learned into60

individual components allows the model to learn a higher-dimensional but easier-to-learn function61

map, in agreement with recent theoretical findings (Li et al., 2023; Malach, 2023). In Figure 1, we62

provide examples of the data formatting methods explored in our work.63

Training on text and arithmetic mixtures and the role of few-shot prompting. We also explore the64

interplay between arithmetic and text data during training, as LLMs are trained on massive amounts65

of data scraped from the internet (Bubeck et al., 2023; Peterson et al., 2019), where it is impractical to66

carefully separate different types of data. We observe how the model’s perplexity and accuracy vary67

with the ratio of text to arithmetic data. We find that jointly training on all the arithmetic operations68

discussed earlier can improve the individual performance of each task and that going from zero-shot69

to 1-shot prompting (showing one arithmetic example) yields a large accuracy improvement, but70

there is no significant improvement in accuracy by showing more examples (Appendix 9).71

The role of pre-training and model scale. We further investigate the role of pretraining by fine-72

tuning pretrained models like GPT-2 and GPT-3 (davinci) and observe that while the zero-shot73

performance on arithmetic operations is poor, prior “skills” acquired during pretraining facilitate74

quick learning of some basic arithmetic tasks, even with a small number of finetuning samples.75

2

However, finetuning on non-standard data, such as those that result from reverse formatting, can76

interfere with the model’s performance when pretrained, leading to decreased accuracy. We finally77

share our observations on how performance in arithmetic changes with scale, and although we find78

that scale does aid when finetuning for these tasks, it is not a necessary trait (Appendix 10).79

Compositional and length generalization. One might question if our trained models truly grasp80

arithmetic. Our findings present a nuanced answer. We find that length generalization beyond trained81

digit lengths is still challenging. For instance, if a model is trained on all n-digit lengths, excluding a82

specific length, it still struggles to accurately calculate this missing digit length. Consequently, the83

models achieve high accuracy within trained digit lengths but struggle significantly beyond this range.84

This suggests that the models learn arithmetic not as a flexible algorithm, but as a mapping function85

constrained to trained digit lengths. While this significantly surpasses memorization, it falls short of86

comprehensive arithmetic “understanding” (Appendix 16).87

Novelty over prior work. Our approach heavily builds upon prior work that uses reasoning-88

augmented data to enhance model performance, and we do not purport originality in the types of89

training data used, nor in achieving the highest performance with the smallest model parameters90

possible. What sets our work apart is the primary focus on meticulously ablating our settings and91

extensive studies on various sampling techniques, training data formats, data source mixing ratios,92

and model scales. Our goal is to pinpoint the factors that contribute to the fast emergence of arithmetic93

capabilities. In the process, we also provide several straightforward yet novel and insightful theoretical94

explanations for some of the phase transition phenomena we observe. Our emphasis on arithmetic is95

not due to its intrinsic significance — one can easily delegate calculations to external tools (Schick96

et al., 2023; Gao et al., 2023). Instead, arithmetic serves as an emergent skill, easy to isolate and test,97

facilitating a more precise exploration of emergent phenomena.98

2 Preliminaries and Experimental Setup99

In this section, we provide a detailed description of our experimental setup, including the model100

architecture and an overview of the various data formatting and sampling techniques used.101

Model and Data. To examine the individual factors at play, we use NanoGPT (Karpathy, 2022), a102

lightweight implementation of the GPT family of models. NanoGPT is a decoder-only transformer103

with six self-attention layers, six heads, and an embedding dimension of 384, resulting in approxi-104

mately 10.6M parameters. Unless stated otherwise, we use character-level tokenization and absolute105

position encoding. We train NanoGPT from random initialization, which we refer to as training from106

scratch, using the conventional next-token prediction objective. To study the effect of scale, we extend107

our experiments to GPT-2 and GPT-3 in Appendix 10. We investigate both training from scratch108

as well as fine-tuning using a pretrained GPT-2, whereas, for GPT-3, we only consider fine-tuning109

pretrained models. Refer to Appendix 19 for more details on the models and data used.110

For arithmetic tasks like addition, subtraction, and multiplication, we define the training dataset for111

a binary operator f(·) as Dtrain = {(ai, bi), yi}Ni=1 where yi = f(ai, bi). For unary operations like112

sine, the training dataset is formulated as Dtrain = {ai, yi}Ni=1, where yi = f(ai). The test dataset113

Dtest is constructed by randomly sampling pairs of operands not included in Dtrain. We then apply114

different data formatting techniques on each data sample from the training dataset, creating the final115

sequence that serves as the model’s input. Note that while we view ai as a single integer, the model116

will see it as a sequence of digits after character-level tokenization.117

Data Formatting. In the following sections, we will delve into the four data formatting approaches118

in our arithmetic experiments. See Figure 1 and Appendix 20 for examples. In Appendix 6, we explore119

the limitations of the conventional plain-format data and demonstrate how a simple reversal of the120

output order can lead to substantial performance improvements and enhanced sample efficiency. We121

introduce two Lemmas to support and explain these findings. Additionally, in Appendix 8, we present122

results on the simplified and detailed scratchpad formats, highlighting significant enhancements in123

sample efficiency for learning addition. We also emphasize the importance of carefully designing the124

intermediate steps in the detailed scratchpad method. Note that the scratchpad formats are largely125

adopted from the literature of chain-of-thought (CoT) training (Nye et al., 2021; Zhou et al., 2022b).126

Structured Data Sampling. While data formatting plays a crucial role, we also discover that127

choosing the samples carefully is also essential. When sampling operands for n-digit addition128

uniformly at random between 1 to 10n − 1, the dataset inevitably becomes highly skewed in terms129

3

of the number of samples with (i) operands containing a certain number of digits and (ii) operands130

resulting in a certain number of carry-on operations. For instance, in the case of 3-digit addition,131

random sampling results in a meager 0.01% probability of selecting a 1-digit number. Additionally, 1132

or 2 carry-on operations are more likely to occur than 0 or 3. To address this imbalance, we employ a133

structured sampling approach. Specifically, we aim to (i) balance digits by assigning higher weights134

to lower-digit numbers during the sampling process and (ii) balance carry-ons by ensuring an equal135

distribution of examples with 0, 1, . . . , n carry-on operations.136

Figure 2: Performance of 3-digit addition on vari-
ous data sampling methods used: (i) Random: uni-
form sampling of operands; (ii) Balanced digits:
assigning higher sampling weights to operations
involving 1 and 2-digit numbers; (iii) Balanced
carry: balancing the dataset to contain an equal
number of carry-on operations; (iv) Balanced
both: balancing digits and carry-ons. We observe
that balanced data improves accuracy compared to
random sampling. Experiments on addition with
the ‘$’ symbol wrapped for each sample.

When sampling 10, 000 examples of 3-digit addition,137

we include all 100 1-digit additions, 900 2-digit sam-138

ples and 9000 3-digit samples. Note that while the139

number of samples increases, the fraction of all pos-140

sible k−digit additions that we sample for k = 2, 3141

decreases due to the inherent skew. The split was142

chosen to ensure we saw a “reasonable” fraction of143

all possible k−digit samples for all k. Similarly, we144

ensure that the number of samples with 0, 1, 2, or 3145

carry-ons are all approximately 2500.146

Figure 2 reveals the importance of balancing. We147

observe improvements in accuracy across the board148

while using balanced data when compared to ran-149

dom sampling. Further, random sampling performs150

relatively poorly even for the simple task of 2−digit151

addition, possibly due to the fact that the model has152

not seen enough of these examples. For the remaining153

experiments, we set the default dataset for addition154

to be one that has both balanced digits and carry-ons.155

3 Limitations156

Length generalization. In our experiments, we did not observe any instances where the model157

could predict beyond the number of digits it had been trained on (see Appendix 16). Shaw et al.158

(2018); Sun et al. (2022) reported similar difficulties and proposed approaches such as relative159

positional encodings. Anil et al. (2022) suggests that models can only perform out-of-distribution160

tasks by combining fine-tuning, prompting, and scratchpad techniques.161

Model/Data scale. Due to the smaller scale of our experiments, we were able to thoroughly162

examine the impact of individual components on the model’s arithmetic learning capabilities. Our163

model was limited to decoder-only architectures, primarily focusing on character-level tokenization.164

Although we have some preliminary results on scaling up and incorporating BPE-based tokenization,165

it is not clear if all our findings can be generalized to the scale of LLMs being used in practice.166

Beyond elementary arithmetic. We choose to analyze simple arithmetic operations in order167

to carefully isolate factors that contribute to emergence. While the existing literature has already168

demonstrated the emergence of complicated abilities in practice, our work seeks to provide a better169

understanding of this behavior by extensive ablations in a controlled setting.170

4 Conclusion171

In this study, we investigate teaching arithmetic operations to small randomly initialized transformers172

using the next-token prediction objective. We carefully ablate different aspects of the training setting173

so as to isolate the factors that contribute to the emergence of arithmetic capabilities. Our results reveal174

that traditional training data is sub-optimal for learning arithmetic, and training on data with detailed175

intermediate steps or even simply reversing the output improves accuracy and sample complexity.176

We also study the effects of few-shot prompting, pretraining, and model scale. Despite improvements177

from detailed data, length generalization remains a challenge, highlighting the need for better-curated178

training data to ensure successful learning of specific algorithms as opposed to just learning an179

approximate function map. The correct approach for learning multiple arithmetic operations, of180

different levels of complexity, is still unclear. We anticipate that this research will contribute to a181

more nuanced understanding of the mechanisms by which transformers (approximately) acquire182

algorithmic skills.183

4

References184

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh,185

Ambrose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization186

in large language models. arXiv preprint arXiv:2207.04901, 2022.187

Samuel R Bowman. Can recursive neural tensor networks learn logical reasoning? arXiv preprint188

arXiv:1312.6192, 2013.189

Samuel R Bowman, Christopher Potts, and Christopher D Manning. Recursive neural networks for190

learning logical semantics. CoRR, abs/1406.1827, 5, 2014.191

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,192

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are193

few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.194

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,195

Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:196

Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.197

Jonathon Cai, Richard Shin, and Dawn Song. Making neural programming architectures generalize198

via recursion. arXiv preprint arXiv:1704.06611, 2017.199

François Charton. Linear algebra with transformers. arXiv preprint arXiv:2112.01898, 2021.200

François Charton. What is my math transformer doing?–three results on interpretability and general-201

ization. arXiv preprint arXiv:2211.00170, 2022.202

Xinyun Chen, Chang Liu, and Dawn Song. Towards synthesizing complex programs from input-203

output examples. arXiv preprint arXiv:1706.01284, 2017.204

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to205

self-debug. arXiv preprint arXiv:2304.05128, 2023.206

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam207

Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:208

Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.209

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi210

Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language models.211

arXiv preprint arXiv:2210.11416, 2022.212

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,213

Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve214

math word problems. arXiv preprint arXiv:2110.14168, 2021.215

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal216

transformers. arXiv preprint arXiv:1807.03819, 2018.217

Andrew Drozdov, Nathanael Schärli, Ekin Akyürek, Nathan Scales, Xinying Song, Xinyun Chen,218

Olivier Bousquet, and Denny Zhou. Compositional semantic parsing with large language models.219

arXiv preprint arXiv:2209.15003, 2022.220

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Peter West,221

Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal, Sean Welleck, Xiang222

Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. Faith and fate: Limits of transformers on223

compositionality, 2023.224

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and225

Graham Neubig. Pal: Program-aided language models, 2023.226

Michael Hanna, Ollie Liu, and Alexandre Variengien. How does gpt-2 compute greater-than?: Inter-227

preting mathematical abilities in a pre-trained language model. arXiv preprint arXiv:2305.00586,228

2023.229

5

Samy Jelassi, Stéphane d’Ascoli, Carles Domingo-Enrich, Yuhuai Wu, Yuanzhi Li, and François230

Charton. Length generalization in arithmetic transformers, 2023.231

Łukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. arXiv preprint arXiv:1511.08228,232

2015.233

Andrej Karpathy. char-rnn. https://github.com/karpathy/char-rnn, 2015.234

Andrej Karpathy. Andrej karpathy’s lightweight implementation of medium-sized gpts. GitHub,235

2022. URL https://github.com/karpathy/nanoGPT.236

Jeonghwan Kim, Giwon Hong, Kyung-min Kim, Junmo Kang, and Sung-Hyon Myaeng. Have you237

seen that number? investigating extrapolation in question answering models. In Proceedings of the238

2021 Conference on Empirical Methods in Natural Language Processing, pp. 7031–7037, 2021.239

Franz J Király, Louis Theran, and Ryota Tomioka. The algebraic combinatorial approach for low-rank240

matrix completion. J. Mach. Learn. Res., 16(1):1391–1436, 2015.241

Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional skills242

of sequence-to-sequence recurrent networks. In International conference on machine learning, pp.243

2873–2882. PMLR, 2018.244

Yingcong Li, Kartik Sreenivasan, Angeliki Giannou, Dimitris Papailiopoulos, and Samet Oymak.245

Dissecting chain-of-thought: A study on compositional in-context learning of mlps. arXiv preprint246

arXiv:2305.18869, 2023.247

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan248

Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint249

arXiv:2305.20050, 2023.250

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale genera-251

tion: Learning to solve and explain algebraic word problems. arXiv preprint arXiv:1705.04146,252

2017.253

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Exposing attention254

glitches with flip-flop language modeling. arXiv preprint arXiv:2306.00946, 2023.255

Eran Malach. Auto-regressive next-token predictors are universal learners, 2023.256

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke257

Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? arXiv258

preprint arXiv:2202.12837, 2022.259

MosaicML. Introducing mpt-7b: A new standard for open source, commercially usable llms, 2023.260

URL www.mosaicml.com/blog/mpt-7b. Accessed: 2023-05-05.261

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. Investigating the limitations of transformers with262

simple arithmetic tasks. arXiv preprint arXiv:2102.13019, 2021.263

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David264

Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your work:265

Scratchpads for intermediate computation with language models. arXiv preprint arXiv:2112.00114,266

2021.267

Santiago Ontanón, Joshua Ainslie, Vaclav Cvicek, and Zachary Fisher. Making transformers solve268

compositional tasks. arXiv preprint arXiv:2108.04378, 2021.269

OpenAI. OpenAI platform. URL https://platform.openai.com/docs/models/gpt-3. Ac-270

cessed: 2023-09-28.271

Joshua Peterson, Stephan Meylan, and David Bourgin. Open clone of openai’s unreleased webtext272

dataset scraper. GitHub, 2019. URL https://github.com/jcpeterson/openwebtext.273

6

https://github.com/karpathy/char-rnn
https://github.com/karpathy/nanoGPT
www.mosaicml.com/blog/mpt-7b
https://platform.openai.com/docs/models/gpt-3
https://github.com/jcpeterson/openwebtext

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan274

Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference.275

Proceedings of Machine Learning and Systems, 5, 2023.276

Jing Qian, Hong Wang, Zekun Li, Shiyang Li, and Xifeng Yan. Limitations of language models in277

arithmetic and symbolic induction. arXiv preprint arXiv:2208.05051, 2022.278

Alec Radford and Karthik Narasimhan. Improving language understanding by generative pre-training.279

2018.280

Yasaman Razeghi, Robert L Logan IV, Matt Gardner, and Sameer Singh. Impact of pretraining term281

frequencies on few-shot reasoning. arXiv preprint arXiv:2202.07206, 2022.282

Benjamin Recht. A simpler approach to matrix completion. Journal of Machine Learning Research,283

12(12), 2011.284

Scott Reed and Nando De Freitas. Neural programmer-interpreters. arXiv preprint arXiv:1511.06279,285

2015.286

Subhro Roy and Dan Roth. Solving general arithmetic word problems. arXiv preprint287

arXiv:1608.01413, 2016.288

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,289

Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to290

use tools, 2023.291

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations.292

arXiv preprint arXiv:1803.02155, 2018.293

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi,294

Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, et al. Language models are mul-295

tilingual chain-of-thought reasoners. arXiv preprint arXiv:2210.03057, 2022.296

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam297

Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the298

imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint299

arXiv:2206.04615, 2022.300

Yutao Sun, Li Dong, Barun Patra, Shuming Ma, Shaohan Huang, Alon Benhaim, Vishrav Chaudhary,301

Xia Song, and Furu Wei. A length-extrapolatable transformer. arXiv preprint arXiv:2212.10554,302

2022.303

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.304

Advances in neural information processing systems, 27, 2014.305

Yi Tay, Jason Wei, Hyung Won Chung, Vinh Q Tran, David R So, Siamak Shakeri, Xavier Garcia,306

Huaixiu Steven Zheng, Jinfeng Rao, Aakanksha Chowdhery, et al. Transcending scaling laws with307

0.1% extra compute. arXiv preprint arXiv:2210.11399, 2022.308

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze309

Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog310

applications. arXiv preprint arXiv:2201.08239, 2022.311

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée312

Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand313

Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language314

models, 2023.315

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia316

Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and317

outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.318

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz319

Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing320

systems, 30, 2017.321

7

Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh, and Matt Gardner. Do nlp models know322

numbers? probing numeracy in embeddings. arXiv preprint arXiv:1909.07940, 2019.323

Cunxiang Wang, Boyuan Zheng, Yuchen Niu, and Yue Zhang. Exploring generalization ability of324

pretrained language models on arithmetic and logical reasoning. In Natural Language Processing325

and Chinese Computing: 10th CCF International Conference, NLPCC 2021, Qingdao, China,326

October 13–17, 2021, Proceedings, Part I 10, pp. 758–769. Springer, 2021.327

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou. Self-consistency328

improves chain of thought reasoning in language models. arXiv preprint arXiv:2203.11171, 2022.329

Taylor Webb, Keith J Holyoak, and Hongjing Lu. Emergent analogical reasoning in large language330

models. arXiv preprint arXiv:2212.09196, 2022.331

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,332

Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.333

arXiv preprint arXiv:2206.07682, 2022a.334

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny335

Zhou. Chain of thought prompting elicits reasoning in large language models. arXiv preprint336

arXiv:2201.11903, 2022b.337

Zhen Yang, Ming Ding, Qingsong Lv, Zhihuan Jiang, Zehai He, Yuyi Guo, Jinfeng Bai, and Jie Tang.338

Gpt can solve mathematical problems without a calculator, 2023.339

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang, and Songfang Huang. How well do large340

language models perform in arithmetic tasks? arXiv preprint arXiv:2304.02015, 2023.341

Wojciech Zaremba and Ilya Sutskever. Learning to execute. arXiv preprint arXiv:1410.4615, 2014.342

Wojciech Zaremba, Karol Kurach, and Rob Fergus. Learning to discover efficient mathematical343

identities. Advances in Neural Information Processing Systems, 27, 2014.344

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,345

Olivier Bousquet, Quoc Le, and Ed Chi. Least-to-most prompting enables complex reasoning in346

large language models. arXiv preprint arXiv:2205.10625, 2022a.347

Hattie Zhou, Azade Nova, Hugo Larochelle, Aaron Courville, Behnam Neyshabur, and Hanie Sedghi.348

Teaching algorithmic reasoning via in-context learning. arXiv preprint arXiv:2211.09066, 2022b.349

8

350

Appendix351

Table of Contents
352
353

5 Related Works 10354

6 Data Format Challenges and Arithmetic Emergence 10355

7 Matrix Completion: an Incomplete Tale of Emergence 11356

8 Training on Chain-of-Thought Data Expedites Emergence 12357

9 Longer Digits, Varied Operations, and Blending Arithmetic with Shakespeare 13358

10 Fine-tuning, Scaling, and Pretraining in Larger Models 14359

11 Extending to Longer Digit Addition 15360

11.1 Training from Random Initialization . 15361

11.2 Fine-Tuning from Pretrained Models . 16362

11.3 Impact of Formats on Fine-Tuning . 17363

12 Teaching Arithmetic Operations Beyond Addition 19364

12.1 Extended Arithmetic Operations . 19365

12.2 Jointly Training on All Five Arithmetic Tasks 21366

13 Mixing Text with Arithmetic Data 22367

13.1 Few-Shot Prompting . 22368

13.2 Disentangling the effect of text on prompting 22369

13.3 Prompting with Text . 23370

14 Fine-tuning, Scaling, and Pretraining in Larger Models 26371

15 Token Efficiency Across Data Formats 28372

16 Length Generalization 29373

17 Proofs 32374

18 Additional Experiments 33375

18.1 Zero-Padding and Symbol Wrapping . 33376

18.2 Low-Rank Matrix Completion . 34377

18.3 The Importance of Intermediate Step Design 35378

18.4 The Effect of Noisy Inputs on Accuracy . 37379

18.5 Analyzing the results on Sine/Sqrt . 38380

19 Experimental Setup 40381

19.1 Dataset . 40382

19.2 Model . 43383

19.3 Hyperparameter Configurations . 44384

20 Prompt Examples 45385

20.1 Addition . 45386

20.2 Subtraction . 47387

20.3 Multiplication . 48388

20.4 Sine . 48389

9

20.5 Square Root . 49390

20.6 Noisy Simple Scratchpad . 49391

20.7 Example data for GPT-3 fine-tuning . 50392

393
394395

5 Related Works396

Instructional data/chain-of-thought. Detailed reasoning in training data has roots predating397

Transformers (Vaswani et al., 2017). Ling et al. (2017); Cobbe et al. (2021) use natural language to398

generate reasoning steps while Roy & Roth (2016); Reed & De Freitas (2015); Chen et al. (2017);399

Cai et al. (2017); Nye et al. (2021) show that symbolic reasoning may suffice. Nogueira et al. (2021)400

stress the importance of large number of small-digit samples (Yuan et al., 2023). Razeghi et al.401

(2022) observe a correlation between the frequency of numbers in the dataset and the performance402

involving them. In contrast, we find that transformers can learn to add numbers that were not seen403

during training. Chain-of-thought (Wei et al., 2022b) refers to the model’s improved accuracy when404

prompted to produce intermediate reasoning steps. Zhou et al. (2022b) show that this can be achieved405

by providing sufficiently informative exemplars as a few-shot prompt (Brown et al., 2020). Zhou et al.406

(2022a) showed that least-to-most prompting can help GPT-3 solve problems decomposable into407

simpler sub-problems, by sequentially solving these subproblems. We extend this notion to simple408

addition and show that asking the model to output the least significant bit first has a similar effect.409

Arithmetic using Transformer models. Our work focuses on decoder-only models as they are410

widely used in LLMs (Brown et al., 2020; Touvron et al., 2023; MosaicML, 2023). However,411

encoder-decoder models have also been extensively studied in the context of learning arithmetic412

operations (Kim et al., 2021; Wang et al., 2021). Wallace et al. (2019) on the other hand, focus413

on the impact of the learned embeddings. Ontanón et al. (2021) extensively study the problem of414

compositional generalization on benchmark datasets, such as SCAN (Lake & Baroni, 2018; Drozdov415

et al., 2022), and conclude that design choices, like relative position encoding (Shaw et al., 2018),416

can improve performance. Charton (2022, 2021) show that Transformers can learn linear algebra417

operations with carefully chosen encodings. Hanna et al. (2023) use mechanistic interpretability418

techniques to explain the limited numerical reasoning capabilities of GPT-2. Dziri et al. (2023);419

Jelassi et al. (2023); Yang et al. (2023) focus on the challenges of length generalization. A recent line420

of work explores finetuning techniques to improve arithmetic capabilities in pretrained models (Qian421

et al., 2022; Lightman et al., 2023; Uesato et al., 2022).422

Beyond Transformers. While we focus our attention on GPT-like models, there is a rich literature423

studying other seq-to-seq models such as recurrent neural networks (RNNs) (Bowman, 2013; Bowman424

et al., 2014; Zaremba et al., 2014). Zaremba & Sutskever (2014) show that RNNs can learn how to425

execute simple programs with for-loops provided they are trained with curriculum learning. Sutskever426

et al. (2014) show that LSTMs show improved performance on text-based tasks such as translation427

when the source sentences are reversed, which is closely related to what we observe in addition.428

Kaiser & Sutskever (2015) propose Neural GPUs which outperform prior RNNs on binary arithmetic429

tasks and even show length generalization i.e., they can perform arithmetic on inputs of lengths that430

were unseen during training. This is yet to be seen even in modern pre-trained models (Bubeck431

et al., 2023) and therefore it is interesting to see if we can leverage some of these techniques and432

apply them to existing modern architectures. Dehghani et al. (2018) propose Universal Transformers433

(UTs) which introduce a recurrent transition function to apply recurrence over revisions of the vector434

representation at each position as opposed to the different positions in the input. They show that on435

the tasks from Zaremba & Sutskever (2014), UTs outperform traditional Transformers and RNNs.436

6 Data Format Challenges and Arithmetic Emergence437

We start by examining integer addition. We first focus on 3-digit addition, i.e., where the two438

summads have at most 3 digits (≤ 999). Later, in Section 9, we extend our findings to numbers with439

up to 10 digits. Surprisingly, teaching addition can be more complex than expected.440

Training on Conventional Data. We start by training NanoGPT on standard addition data441

represented as ‘A3A2A1 + B3B2B1 = C3C2C1’, termed the plain format. However, as shown in442

Figure 1, this leads to fairly poor performance. We suspect that this is because the next-token443

10

prediction objective outputs the most significant digit (MSB) first. The following lemma clarifies the444

necessity to access all operand digits for outputting the MSB first.445

Lemma 1. Let A and B be two n-digit numbers, and let C = A + B. Suppose an algorithm A446

outputs the digits of C in decreasing order of significance, then A must have access to all digits of A447

and B starting from the first digit that it outputs.448

The lemma suggests that to train a model for addition and to output the MSB first, it is necessary to449

emulate a “global” algorithm. Unlike the standard “local” algorithm for addition, which consists of450

computing digit-wise sums and carry-ons, approximating the global algorithm would require learning451

a more complicated function than necessary. The increased complexity results in decreased accuracy,452

as observed in our experiments. Liu et al. (2023) refer to this phenomenon as attention glitches.453

Reversing the Output. We propose that the reverse format ‘$A3A2A1 + B3B2B1 = C1C2C3$’ is454

more suitable for next-word prediction models. The rationale behind this is that when generating the455

sum by starting with the least significant digit (LSB), the model only needs to learn a local function456

of three inputs per digit – the two relevant digits of the operands and the carry-on from the previous457

digit. This local operation simplifies the function to be learned. The following lemma formalizes this:458

Lemma 2. There exists an algorithm that computes C = A+B for two n-digit numbers A and B459

and outputs its digits in increasing order of significance such that, at each position i, the algorithm460

only requires access to the ith digits of A and B, as well as the carry-on from the previous position.461

Lemma 2 directly follows from the standard algorithm for addition, which performs the sum and462

carry-on operations digit by digit. The implications of these lemmata are evident in our experiments463

when comparing the accuracy of the plain and reverse formats. As shown in Figure 1, the accuracy464

of plain plateaus at around 85%, even with 10k addition examples. In contrast, training on reversed465

outputs significantly enhances accuracy. Moreover, reverse requires considerably fewer samples.466

What is particularly remarkable is the rapid emergence of addition and a phase transition occurring467

between 1k to 4k samples for reverse. During that, the model rapidly transitions from being unable to468

add two numbers to being capable of perfectly adding. This leads us to ask:469

Why does addition rapidly emerge as the number of training examples increases?470

7 Matrix Completion: an Incomplete Tale of Emergence471

Although the rapid phase transition observed in the previous section may initially seem surprising,472

closer examination reveals a fascinating equivalence – learning an addition map on n digits from473

random samples can be considered as completing a rank-2 matrix. Establishing this connection474

with low-rank matrix completion (LRMC) provides meaningful insights into the observed phe-475

nomenon. However as we explain in this Section, this connection does not tell the complete story,476

and Transformers possess generalization capabilities far beyond what LRMC would predict.477

(a) MC of Addition Matrix

101 102 103 104

Number of Revealed Entries

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s P

ro
ba

bi
lit

y

n = 20
n = 50
n = 100
n = 500

(b) Comparing LRMC & NanoGPT

0 1000 2000 3000 4000 5000
Number of train examples

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

plain
reverse
matrix completion

Figure 3: (a) We run Algorithm 1 (Király et al., 2015) on
the addition matrix for n = 20, 50, 100, 500 and report the
success probability while varying the number of revealed
entries. As expected, a sharp phase transition occurs when
approximately O(n) entries are revealed. (b) We compare
the performance of NanoGPT trained on a dataset con-
taining n = 100 samples (i.e., 2-digit addition) to that of
the corresponding LRMC problem using the same sample
set. Remarkably, at ≈ 1500 samples, both NanoGPT and
Algorithm 1 begin learning addition almost flawlessly.

Learning addition tables is Matrix Comple-478

tion. Learning addition from samples i+ j479

can be formulated as a rank-2 Matrix Com-480

pletion (MC) problem, where we partially ob-481

serve an n × n matrix M , whose (i, j)-th482

entry represents i + j. M can be decom-483

posed into the sum of two rank-1 matrices,484

N1T + 1NT , where N is a vector with en-485

tries {1, . . . n}, and 1 is the vector of ones.486

Recovering a rank-2 matrix, in the absence of487

noise, can be sample-optimally performed by488

a simple iterative algorithm from Király et al.489

(2015) (Algorithm 1 in Appendix 18.2). As490

depicted in Figure 3a, a sharp phase transition491

occurs at O(n), a well-known matrix recovery492

phenomenon (Recht, 2011).493

We notice a similar phase transition in494

NanoGPT. To investigate it, we focus on 2-digit addition (i.e., n = 100) and evaluate the performance495

11

of learning addition through NanoGPT and LRMC (Figure 3a) by constructing train data as the496

revealed entries of the M matrix. Note that the dataset is no longer balanced, as the revealed entries497

are randomly sampled for LRMC experiments, to match the standard MC probabilistic settings Recht498

(2011). In Figure 3b, both NanoGPT and LRMC exhibit phase transitions at approximately 1500499

samples.500

While the observed phase transition can be attributed to the principles of LRMC, shedding light on the501

emergent arithmetic skill in NanoGPT, this connection falls short of capturing the full generalization502

capabilities displayed by NanoGPT.503

NanoGPT generalizes better than Matrix Completion solutions. Upon further investigation,504

we find that NanoGPT exhibits capabilities beyond LRMC. Notably, LRMC is constrained by its505

inability to generalize in the presence of missing rows or columns. In our context, this equates to506

certain numbers being omitted from the training data. To assess NanoGPT’s ability to overcome507

this, we deliberately exclude specific numbers or digits from our training data and assess the model’s508

ability in learning addition. Can the model still generalize to unseen numbers?509

As shown in Table 1, the answer to this question is a resounding Yes! The model achieves almost per-510

fect accuracy even when excluding half of all possible 3−digit numbers. NanoGPT can successfully511

learn 3-digit addition even when numbers or digits are intentionally excluded from the training data,512

thereby exhibiting generalization capabilities that far exceed what standard LRMC would predict.513

Table 1: Impact of excluding numbers on addition task: NanoGPT models trained with 100/200/500 excluded
operands show no significant drop in accuracy and in some cases, the performance even improves. Note that
models trained with reverse data remain consistently at 100% accuracy.

No Exclusion
Excluding

100 numbers
Excluding

200 numbers
Excluding

500 numbers

Plain Rev Plain Rev Plain Rev Plain Rev

Overall Accuracy 87.18% 99.97% 87.94% 100.00% 87.24% 99.99% 88.15% 99.99%
Exclusion Accuracy - - 92.55% 100.00% 92.15% 99.95% 90.85% 100%

Specifically, we randomly choose 100/200/500 numbers and exclude them from the training data.514

We then evaluate the trained models using two metrics: (i) Overall accuracy: which measures515

the accuracy over a random set of 10, 000 examples and (ii) Exclusion accuracy: which measures516

the accuracy only over the excluded set. Remarkably, excluding numbers from the training data517

sometimes leads to improved performance. We conjecture that this may be due to a regularization518

effect, similar to random masking or cropping images in vision tasks. In Appendix 18.2.1, we further519

find that NanoGPT models can even generalize to unseen digits.520

8 Training on Chain-of-Thought Data Expedites Emergence521

(a) Sample Efficiency

0 1k 2k 3k 4k 5k 6k 7K
Number of train examples

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

(b) Token Efficiency

0 100k 200k 300k
Number of unique tokens

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

addition
reverse
simplified scratchpad
detailed scratchpad

Figure 4: (a) Comparison of sample efficiency:
evaluating performance on training datasets with
different numbers of addition samples. While all
variants other than plain achieve 100% accuracy,
they differ in terms of sample complexity. (b) Num-
ber of unique tokens required by NanoGPT to learn
addition. Reverse is the most efficient in terms of
token usage for model training, as the scratchpad
methods, although more sample-efficient, require
more tokens per sample.

So far, we observed that simply reversing the output522

can result in remarkable performance, exceeding that523

of LRMC in learning addition. Here, we investigate524

if it is possible to expedite the emergence of addition525

by further enhancing the data format. As addition is526

a multi-step process, we explore the idea of incorpo-527

rating additional information about each intermediate528

step. We adopt a CoT style approach, where we guide529

the model to learn addition step-by-step. We explore530

two levels of detail in the provided instruction steps,531

as shown in Figure1: (i) Simplified Scratchpad with532

minimal information – the sum and carry informa-533

tion for each digit/step. (ii) Detailed Scratchpad534

with comprehensive information on detailed traces of535

execution for each intermediate step.536

The results in Figure 4a show that the model trained537

on simplified scratchpad achieves 100% accuracy with only 2000 samples, whereas reverse requires538

more than twice as many. Detailed scratchpad, which provides even more fine grained information,539

12

achieves perfect addition with just 1000 samples. This indicates a clear message: incorporating more540

information enables the model to learn addition with far fewer examples. We conjecture that this is541

because breaking down the required compositional function to be learned into individual, simpler542

components allows the model to learn a higher-dimensional but easier-to-learn function map, in543

agreement with recent theoretical work (Li et al., 2023; Malach, 2023).544

We note that while CoT-style training enhances sample efficiency, it may not necessarily be the most545

“token-efficient” approach. To account for the cost associated with training and inference, we conduct546

a cost analysis based on the number of “unique” tokens (number of training samples × number of547

tokens per sample – see Appendix 15 for details). encountered during training. The result in Figure 4b548

shows that reverse is the most efficient in terms of token usage for model training. The scratchpad549

methods, although more sample-efficient, require more tokens per sample.550

In summary, incorporating scratchpad data and decomposing the addition task into steps offer a551

promising strategy to improve the performance and efficiency of small models in learning addition552

from scratch. Nevertheless, for practical usage, it is crucial to evaluate both the number of samples for553

achieving the desired performance and the actual token requirements during training and inference.554

9 Longer Digits, Varied Operations, and Blending Arithmetic with555

Shakespeare556

0 50k 100k 150k 200k
Number of train examples

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

plain
reverse
simplified scratchpad
detailed scratchpad

5-digit 7-digit 10-digit

Figure 5: Comparison of sample efficiency
for 5, 7, and 10-digit additions. Training
on plain requires an increasing number of
samples for higher digits, while the sample
complexity for other methods remains rel-
atively consistent.

In this section, we go beyond 3-digit addition to encompass557

a wider range of arithmetic tasks and longer digits to show558

that our insights on data sampling and formatting hold true559

even in this regime. We also explore the effect of mixing560

arithmetic with text data, and few-shot prompting.561

Extending to longer digit addition. We repeat the exper-562

iment from Section 2 with up to 10 digit integers. Figure 5563

shows that the behavior of all data formats remains similar564

across varying number of digits. In fact, the performance565

gap between the modified formats and plain grows with566

longer digits. While plain requires an increasing number567

of samples to learn higher-digit additions, the reverse and568

scratchpad formats maintain a consistent sample complexity.569

We also observe similar results in the fine-tuning setting, where we fine-tune a model initially trained570

on k-digits on k + 1-digit data. See Appendix 11 for details on the experimental setup.571

Teaching arithmetic operations beyond addition. While our experiments so far were primarily572

focused on addition, we include other arithmetic operations to demonstrate the broader applicability573

of our insights. We consider a mix of arithmetic tasks – subtraction, multiplication, sine, and square574

root. Each operation entails its unique challenges and intricacies. For instance, subtraction introduces575

the concept of negative numbers, multiplication can generate significantly longer outputs, and sine576

and square root functions entail computations involving floating-point numbers.577

(a) Subtraction

0 5k 10k 15k 20k
Number of train examples

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

plain
reverse
detailed scratchpad

(b) Multiplication

1000 2000 3000 4000 5000 6000 7000
Number of train examples

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

plain
reverse
detailed scratchpad

(c) Sine

0 5k 10k 15k 20k 25k 30k 35k 40k
Number of train examples

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

plain, =0
plain, =5e-4
plain, =5e-3
detailed, =0
detailed, =5e-4
detailed, =5e-3

(d) Square Root

0 5k 10k 15k 20k 25k 30k 35k 40k
Number of train examples

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

plain, =0
plain, =5e-4
plain, =5e-3
detailed, =0
detailed, =5e-4
detailed, =5e-3

Figure 6: Performance of 3-digit subtraction, 2-digit
multiplication, 4-digit precision sine and square root
with varying data formats.

The results depicted in Figure 6 indicate that similar578

to the findings of addition, the detailed scratchpad579

format significantly improves performance over580

plain or reverse formats and yields efficient results581

even with few samples for subtraction and multi-582

plication tasks. Interestingly, we find reverse is not583

particularly effective in multiplication. On the other584

hand, the detailed scratchpad format exhibits re-585

duced efficiency for sin and sqrt compared to other586

operations. This discrepancy can be traced back to587

the complexity of the intermediate steps involved588

in the detailed scratchpad. While addition, subtrac-589

tion, and multiplication are decomposed into sim-590

pler functions, sine and square root involve more in-591

tricate operations. See Appendix 18.5 for a broader592

analysis of the error profile, and Appendix 12 for593

13

detailed experimental setup and results on jointly594

training on all five arithmetic tasks.595

(a) Plain

0 5k 10k 15k 20k 25k 30k 35k 40k
Plain Addition Samples

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

Zero-shot
1-shot
2-shot
3-shot
text_prompt

(b) Detailed scratchpad

1000 2000 3000 4000 5000
Detailed Scratchpad Samples

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

) Zero-shot
1-shot
2-shot
3-shot
text_prompt

Figure 7: Performance of NanoGPT model trained with
the Shakespeare dataset, addition dataset in plain, and
detailed scratchpad format. The number of plain (left)
and detailed scratchpad (right) formatted samples are
varied. Performance is evaluated on zero-shot, few-shot,
and text prompts, with the shaded area representing the
standard deviation across various prompt exemplar sets.

Mixing Text with Arithmetic Data. While596

the models so far were trained exclusively on597

arithmetic tasks, in practice, LLMs utilize a com-598

bination of arithmetic and text data for training.599

How does that affect the emergence of arith-600

metic skills? To explore that we incorporate601

both addition samples and text into our train data602

and evaluate the models with few-shot prompt-603

ing (showing a few examples of addition in the604

prompt) to see if it is able to be effectively con-605

ditioned for the appropriate context (arithmetic/-606

text generation). As we see in Figure 7, we607

find that few-shot prompting improves the per-608

formance of the model, allowing it to perform609

addition accurately even in the plain format.610

Intriguingly, accuracy remains high using plain even with the inclusion of a text prompt preceding611

“A+B=”. This is likely due to the structure of our mixed dataset where addition examples are612

interspersed within Shakespeare text. With the incorporation of more addition examples, instances613

where addition follows Shakespeare text increases, leading to a decrease in potential inconsistencies614

when text content is present during addition test queries. We further analyze the effect of text on615

prompting for both cases with and without text in the training data in Appendix 13.616

10 Fine-tuning, Scaling, and Pretraining in Larger Models617

(a) Test acc. on plain addition

0 5k 10k 15k 20k 25k 30k 35k 40k
Plain Addition Samples

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

NanoGPT, Zero-shot
NanoGPT, Few-shot
GPT2, Zero-shot
GPT2, Few-Shot

(b) Test acc. on detailed scratchpad

1000 2000 3000 4000 5000
Detailed Scratchpad Samples

96.0
96.5
97.0
97.5
98.0
98.5
99.0
99.5

100.0

Te
st

 A
cc

ur
ac

y
(%

)

NanoGPT, Zero-shot
NanoGPT, Few-shot
GPT2, Zero-shot
GPT2, Few-Shot

Figure 8: Comparing NanoGPT and GPT-2 trained jointly
on the Shakespeare dataset and addition tasks using plain
and detailed scratchpad formatting. Larger model sacale
and using few-shot prompting enhances performance.

We extend our study from NanoGPT to larger618

models like GPT-2 and GPT-3 to explore the619

impact of pretraining and model size. Initially,620

we compare the performance of NanoGPT and621

GPT-2, both trained from scratch. This high-622

lights the advantages of larger model scales,623

especially in zero-shot scenarios. We then fine-624

tune a pretrained GPT-3 on various arithmetic625

tasks using different data formats, reaffirming626

the importance of data formatting for larger627

pretrained models.628

Comparing NanoGPT and GPT-2. We repeat our experiments on a GPT-2 model with 85M629

parameters, with twice as many layers, heads, and embedding size compared to NanoGPT. We630

train the model from scratch using character-level tokenization, jointly on textand addition tasks,631

adopting both plain and detailed scratchpad formats as in Section 9. The results depicted in Figure 8632

demonstrate that the larger model outperforms in both plain and detailed scratchpad evaluations.633

GPT-3 experiments. We consider three GPT-3 variants: Ada, Curie, and Davinci (OpenAI). We634

fine-tune these models using the same four data formatting methods as our NanoGPT experiments635

except that we introduce spaces between numbers in plain and reverse formatting to ensure consistent636

tokenization of numbers.637

Table 2: Evaluation of addition performance for fine-tuned GPT-3 models: Davinci, Curie, and Ada. In each
case, the model is finetuned on 1000 samples of addition in the corresponding format.

GPT-3 Model Zero-shot Plain Reverse Simplified Scratchpad Detailed Scratchpad

Davinci 2% 34% 80.9% 88.7% 99.5%
Curie 0.0% 1.4% 12.3% 10.7% 99.7%
Ada 0.0% 0.3% 6.3% 0.6% 99.8%

The results in Table 2 show that starting with pretrained GPT-3 significantly improves performance638

compared to training NanoGPT or GPT-2 from scratch with only 1000 examples (Figure 4a). Similar639

14

to the result of training NanoGPT from scratch, the modified formats all outperform the plain format.640

Detailed scratchpad data achieves near-perfect accuracy, albeit with increased training and inference641

costs due to higher context length requirements. For our detailed experimental setup and further642

experiments on fine-tuning GPT-3 refer to Appendix 14.643

11 Extending to Longer Digit Addition644

In this section, we extend our experiments beyond 3-digit addition and explore longer-digit settings,645

ranging up to 10 digits. Our aim is to investigate whether our previous findings regarding the sample646

efficiency of reverse and scratchpad formats hold true for larger numbers of digits.647

We begin by observing that the phase transition behavior observed in previous sections also applies to648

longer-digit addition. Furthermore, we discover that the advantages of using reverse and scratchpad649

formats become even more pronounced as the number of digits increases. Next, we examine the650

number of training samples required to learn k + 1 digit addition when fine-tuning a pretrained651

model trained on k digit addition. We find that while the number of samples needed to further learn652

k + 1 digit addition remains relatively consistent for reverse and scratchpad formats, the plain format653

requires an increasing number of samples.654

Experimental setup and data generation. To explore the performance of the model in higher-digit655

addition scenarios, we extend the experimental setup described in Section 2. We adopt a balanced656

sampling approach for training data with D digits, ensuring an equal number d of all combinations of657

digits for both operands as follows:658

We begin by sampling all 100-digit additions. For the remaining number of digits, ranging from659

2 to D, we generate addition examples of the form “A + B = C”. The two operands, A and B,660

are randomly sampled d = ⌊(N − 100)/(D(D + 1)/2 − 1)⌋ times for every D, where N is the661

total number of training examples. Operand A is sampled between [10k1−1, 10k1 − 1] and operand662

B is sampled between [10k2−1, 10k2 − 1], for all 1 ≤ k1 ≤ k2 ≤ D, excluding the case where663

k1 = k2 = 1. After sampling the two operands, we randomly interchange them to cover cases where664

A has fewer digits than B and vice versa.665

11.1 Training from Random Initialization666

(a) 5-digit Addition

0 25k 50k 75k 100k
Number of train examples

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

plain
reverse
simplified scratchpad
detailed scratchpad

(b) 7-digit Addition

0 50k 100k 150k 200k
Number of train examples

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

plain
reverse
simplified scratchpad
detailed scratchpad

(c) 10-digit Addition

0 100k 200k 300k 400k 500k
Number of train examples

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

plain
reverse
simplified scratchpad
detailed scratchpad

Figure 9: Comparison of sample efficiency for 5, 7 and 10-digit additions: performance of models trained with
varying numbers of addition samples on each data format. The plain format data requires an increasing number
of training examples for higher digits, while the number of samples required for other methods remains relatively
consistent.

We repeat the experiment from Section 2 on nanoGPT with longer digits. The results shown in Figure 9667

demonstrate a similar behavior to the findings observed in Figure 4a for 3-digit addition. This indicates668

that our previous observations generalize to longer sequence lengths. Notably, the performance gap669

between the modified formats (reverse, simplified scratchpad, and detailed scratchpad) and the plain670

format becomes even more significant in the context of higher digits. While the plain format requires671

an increasing number of training examples to learn higher-digit additions, the reverse or scratchpad672

formats exhibit a more consistent requirement in terms of the number of training examples.673

This prompts us to explore the differences between each format in a fine-tuning setting. Specifically,674

we ask whether a model trained on reverse or scratchpad-formatted k digit addition data would find it675

easier to learn k + 1 digit addition compared to a model trained with plain format addition.676

15

11.2 Fine-Tuning from Pretrained Models677

In this section, we investigate the generalization ability of transformer models, specifically focusing678

on their capacity to learn higher-digit additions based on their knowledge of lower-digit additions.679

Additionally, we explore how the choice of data format affects the number of samples required to680

learn higher-digit additions.681

Forgetting of k-digit addition when trained on k + 1-digit addition.682

We begin by fine-tuning a model that was initially trained on 3-digit addition. We fine-tune this683

model using 4-digit addition training data, with each data format being used separately. To mitigate684

the “catastrophic forgetting” phenomenon, we experiment with different learning rates, gradually685

reducing the magnitude. We continue this process until the learning rate becomes too small for the686

model to effectively learn 4-digit addition.687

0

50

100
1-digit accuracy 2-digit accuracy

0 5000 10000
0

50

100
3-digit accuracy

0 5000 10000

4-digit accuracy

0.0 0.2 0.4 0.6 0.8 1.0

Number of Iterations
0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y
(%

)

plain (lr=1e-4)
reverse (lr=5e-6)

simple (lr=1e-5)
detailed (lr=1e-6)

Figure 10: Accuracy of 1 to 4-digit additions during fine-tuning of a pretrained model on 3-digit additions using
different data formats. The model is fine-tuned using only 4-digit addition data with corresponding formats. We
observe that the plain format ‘forgets’ 1 to 3-digit additions entirely when learning 4-digit addition. In contrast,
the detailed scratchpad method successfully learns 4-digit addition while maintaining high performance on 1 to
3-digit additions.

The results depicted in Figure 10 reveal interesting insights about the fine-tuning process. When688

training the model using the plain format with only 4-digit addition data, there is an immediate drop689

in accuracy for 1 to 3 digit additions. This indicates that the model experiences significant forgetting690

of previously learned additions. In contrast, the reverse and scratchpad methods exhibit a more691

favorable behavior. The model trained with these methods does not completely forget 1 or 2 digit692

additions while learning 4-digit addition. Remarkably, the detailed scratchpad method stands out by693

enabling the model to learn 4-digit addition without compromising its performance on 1 to 3 digit694

additions. Although there is a slight decrease in performance for 3-digit additions initially, the model695

quickly recovers and picks up the knowledge again as it trains on 4-digit additions.696

This result can be explained by the hypothesis that learning a k + 1 digit addition from a k-digit697

model is an incremental process for the detailed scratchpad method. The model already has a solid698

foundation in understanding the intermediate steps involved in addition, so it only needs to adapt to699

longer sequences. In contrast, for the plain format, learning higher-digit additions requires the model700

to establish new mappings to generate correct outputs, which is a more challenging task.701

Sample efficiency of fine-tuning k-digit models with k + 1-digit examples. Building upon our702

previous findings that fine-tuning a model solely on k+1-digit addition leads to a loss in performance703

for k-digit addition, we modify our approach to prevent the loss of performance in the k-digit addition704

task. Instead of training solely on k + 1-digit examples, we construct a dataset that includes all705

addition tasks from 1-digit to k + 1-digit, with the method described in the previous section. By706

doing so, we aim to maintain the performance of 1 to k-digit addition while enabling the model to707

learn k + 1-digit addition during fine-tuning.708

16

In this experiment, we investigate the number of k+ 1-digit training examples required for the model709

to effectively learn k + 1-digit addition when fine-tuning a pretrained model on k-digit addition. It is710

important to note that this setting differs from the previous section (Section 11.1), where we focused711

on training models from random initialization. Here, we specifically focus on the fine-tuning process.712

We fine-tune individual models pretrained on each data format (using k-digit addition) and further713

train them using the same data format on a new dataset that includes all addition examples from714

1-digit to k + 1-digit.715

(a) Plain

0 10000 20000 30000 40000 50000 60000
Number of k+1 digit train examples

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

3-digit
4-digit
6-digit
8-digit

(b) Reverse

0 1000 2000 3000 4000 5000 6000
Number of k+1 digit train examples

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

3-digit
4-digit
6-digit
8-digit

(c) Simplified Scratchpad

0 1000 2000 3000 4000 5000
Number of k+1 digit train examples

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

3-digit
4-digit
6-digit
8-digit

(d) Detailed Scratchpad

0 500 1000 1500 2000 2500 3000
Number of k+1 digit train examples

0

20

40

60

80

100
Te

st
 A

cc
ur

ac
y

(%
)

3-digit
4-digit
6-digit
8-digit

Figure 11: Fine-tuning performance of pretrained k-digit models using varying numbers of k+1-digit examples,
with corresponding data formats. The plain format requires an increasing number of k + 1-digit examples as the
number of digits (k + 1) increases. In contrast, the modified formats (reverse, scratchpad) exhibit consistent
performance across different numbers of digits, requiring a relatively consistent number of examples to learn the
additional digit.
The results in Figure 11 demonstrate the number of k + 1-digit addition samples required for a716

pretrained model capable of performing k-digit addition to learn the addition of k + 1 digits. The717

findings reveal that modified formats (reverse, scratchpad) require a relatively small number of718

samples (between 1000 and 5000) to learn the addition of an extra digit. In contrast, the plain format719

necessitates a significantly larger number of training examples, with the requirement increasing as720

the number of digits grows.721

This observation aligns with our previously established Lemma 2 and Lemma 1, which suggest that722

learning higher-digit addition in the reverse format involves processing the i-th digit of the operands723

and carrying from the previous position. This operation remains consistent regardless of the number724

of digits being added. As a result, the model primarily needs to learn how to handle longer digits to725

perform addition effectively.726

In contrast, the plain addition format requires the model to learn a more complex function that727

incorporates all digits from both operands. As the number of digits increases, the complexity of728

this function grows as well. This highlights the greater difficulty faced by the plain format in729

accommodating additions with a larger number of digits.730

11.3 Impact of Formats on Fine-Tuning731

We delve deeper into the impact of different formats on the fine-tuning process. Specifically, we732

investigate whether training a model in one format helps in learning addition in another format,733

17

and vice versa. To conduct this analysis, we begin with a model trained on each data format using734

3-digit addition examples. We then individually fine-tune these pretrained models using different735

data formats, on 4-digit addition examples.736

0

50

100
finetuning with plain finetuning with reverse

0 5000 10000
0

50

100
finetuning with simple

0 5000 10000

finetuning with detailed

0.0 0.2 0.4 0.6 0.8 1.0

Number of Iterations
0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y
(%

)

plain
reverse

simple
detailed

random init

Figure 12: Performance of fine-tuning a 3-digit model
trained on different data formats (plain, reverse, simple
scratchpad, detailed scratchpad, and random initializa-
tion) individually with different data formats of 4-digit
addition. The results demonstrate that fine-tuning yields
the best performance when the pretrained model and the
fine-tuning format are consistent. Notably, fine-tuning
a detailed scratchpad format model shows suboptimal
performance. We hypothesize that this is due to the need
for the model to “unlearn” the rigid and verbose format
and adapt to the new format.

The results depicted in Figure 12 highlight some737

interesting findings. Firstly, we observe that a738

model trained with the same format as the fine-739

tuning format exhibits faster learning in terms740

of the number of iterations. For instance, train-741

ing a model with the plain format outperforms742

training a model pretrained with scratchpad for-743

mats. This suggests that the model benefits from744

the consistency and familiarity provided by the745

same format throughout the training process.746

Additionally, we notice that fine-tuning a de-747

tailed scratchpad pretrained model on other for-748

mats proves to be more challenging. This ob-749

servation can be attributed to the need for the750

model to “unlearn” the intricacies of the ver-751

bose detailed scratchpad format and adapt to752

the new format. For example, the plain format753

does not involve the use of alphabet characters754

in the data, so a model pretrained with the plain755

format would have a low probability of gener-756

ating alphabetic outputs. In contrast, a detailed757

scratchpad pretrained model would have encoun-758

tered various alphabets and may have a tendency759

to output them. Therefore, adjusting to a new760

format requires additional effort for the model761

to “unlearn” the patterns specific to the previous762

format and effectively learn the new format it is being trained on.763

These findings highlight the importance of considering format consistency during the fine-tuning764

process, as it can impact the efficiency and effectiveness of the learning process. We will delve further765

into this topic in the upcoming section 10, where we fine-tune pretrained GPT-3 models. Notably, we766

observe that fine-tuning with reverse or simplified scratchpad formats actually yields worse results767

compared to fine-tuning with plain formats. For a detailed exploration of these observations, please768

refer to the forthcoming section.769

18

12 Teaching Arithmetic Operations Beyond Addition770

While this study has a primary focus on the addition operation and aims to comprehend the signifi-771

cance of data sampling and formatting, its findings are applicable beyond the realm of addition alone.772

In this section, we expand our examination to include other arithmetic operations, thus demonstrating773

the broader applicability of our insights. We consider a mix of arithmetic tasks, including binary774

operations like subtraction and multiplication, and unary operations such as sine and square root.775

Each operation entails its unique challenges and intricacies. For instance, subtraction introduces the776

concept of negative numbers, multiplication can generate significantly longer outputs, and sine and777

square root functions entail computations involving floating-point numbers, which are considered up778

to four digits of precision in our work.779

We acknowledge that while our examination is detailed, it does not encompass all the fundamental780

arithmetic operations or the entire scope of floating-point arithmetic. Specifically, our focus is primar-781

ily on integer arithmetic for binary operations, considering a limited length of digits. Additionally,782

for unary operations, we confine ourselves to a restricted number of digits below the decimal point.783

In Section 12.1, we delve into each arithmetic operation individually, exploring the impact of784

data formatting and determining the relevancy of our insights across disparate tasks. Further, in785

Section 12.2, we perform an analysis of joint training across all five tasks, investigating the potential786

performance implications for each individual task.787

12.1 Extended Arithmetic Operations788

In order to extend our analysis to arithmetic operations beyond addition, we consider the following789

tasks:790

Subtraction (−). We consider subtraction of positive numbers up to 3 digits, written as791

A3A2A1 − B3B2B1 = C3C2C1 in (i) plain formatting, and $A3A2A1 − B3B2B1 = C1C2C3$ in (ii)792

reverse formatting. As with addition, scratchpad-based methods (iii, iv), present the intermediate steps793

of digit-wise subtraction and handling of carry-ons. These steps proceed from the least significant794

bit (LSB) to the most significant bit (MSB). If the final result after computing all the digit-wise795

subtractions is negative, we subtract the number in the most significant bit (MSB) position multiplied796

by 10 to the power of (number of digits in the output - 1) from the remaining digits in the output. In797

Section 18.3, we present an alternative version of the detailed scratchpad formatting for subtraction.798

Multiplication (×). We consider multiplication of positive numbers up to 2-digits. (i) Plain799

formatting examples are formatted as A2A1 ∗ B2B1 = C4C3C2C1, while (ii) reverse formatting is800

formatted as $A2A1 ∗ B2B1 = C1C2C3C4$. The (iv) detailed scratchpad method simplifies each801

intermediate step by conducting a series of multiplications between the first operand and each digit802

of the second operand, starting from the least significant bit (LSB) and moving toward the most803

significant bit (MSB). For each step, we multiply the result by an exponentiation of 10 corresponding804

to the relative digit position.805

Sine (sin). We consider decimal numbers within the range [−π/2, π/2], truncated to 4-digit806

precision. (i) Plain formatting examples are formatted as sin(A0.A1A2A3A4) = B0.B1B2B3B4.807

For (iv) detailed scratchpad method, we include the Taylor series expansion steps for sine, which808

is represented as sin(x) = x − 1
3!x

3 + 1
5!x

5 − 1
7!x

7 + · · · . These intermediate steps involve809

exponentiation, which may not be any easier to compute than the sine operation itself.810

Square Root (√). We consider decimal numbers within [1, 10), truncated to 4-digits of precision811

with the format, written as sqrt(A0.A1A2A3A4) = B0.B1B2B3B4 for (i) plain formatting. For (iv)812

detailed scratchpad method, we enumerate each step of Newton’s method to compute the square root813

function. The iterative formula is given by xn = 1
2 (xn−1 +

x
xn−1

), where x0 is initialized as the814

floor of the square root value of the operand x. These intermediate steps involve a division operation,815

which can be as complex as the square root operation itself.816

For evaluation of sine and square root, we classify the result ŷi as correct if the absolute difference817

between ŷi and the ground truth value yi is less than or equal to a predefined threshold ϵ ≥ 0.818

19

For each arithmetic task, we explore both the plain format and the detailed scratchpad format.819

The detailed scratchpad formatting for each task is illustrated in Figure 13 and Appendix 20. For820

subtraction, the process involves breaking down the operation into intermediate steps of digit-wise821

subtraction, including carry-ons when necessary. Unlike addition, subtraction requires an additional822

step to handle cases where the first operand is smaller than the second. Further details on the detailed823

scratchpad for subtraction can be found in Section 18.3. For multiplication, each intermediate step824

carries out a 2-digit × 1-digit multiplication between the first operand and each separate digit of the825

second operand. For sine and square root, we utilize a sequence of iterative approximations instead826

of algorithmic explanations. Specifically, Taylor’s series expansion steps for sine and Newton’s827

method steps for square root are used. It is important to note that while addition, subtraction, and828

multiplication are broken down into simpler operations at each step, CoT for sine and square root829

functions requires intermediate steps involving operations like exponentiation or division, which830

might not be inherently simpler.831

Detailed scratchpad formatting for different arithmetic tasks

Examples of detailed scratchpad formatting for different arithmetic tasks:
(1) Subtraction - includes borrows for intermediate steps, (2) Multiplication
- decomposes the second operand for 2-digit × 1-digit multiplication at each
step, (3) Sine - utilizes Taylor series expansion, and (4) Square root - employs
Newton’s method.

Subtraction
Input:
128 -367
Target:
<scratch >
[1,2,8] has 3 digits.
[3,6,7] has 3 digits.
[1,2,8] - [3,6,7] , A=[] , C=0 , 8-7-0=1
, A->1 , C->0

[1,2] - [3,6] , A=[1] , C=0 , 2 -6 -0+10=6
, A->6 , C->-1

[1] - [3] , A=[6,1] , C=-1 , 1-3-1=-3 ,
A->-3 , C->-1
[] - [] , A=[-3,6,1]
-300+61= -239 , END
</scratch >
-2 3 9

Multiplication
Input:
12*36
Target:
<scratch >
[1,2] has 2 digits.
[3,6] has 2 digits.
[1,2] * 6 , A=[7,2] , k=1 , B=[7 ,2] , C
=0+72=72
[1,2] * 3 , A=[3,6] , k=10 , B=[3,6,0] ,
C=72+360=432 , END

</scratch >
4 3 2

Sine
Input:
sin (1.5707)
Target:
<scratch >
x_0 =1.5707
x_1: x_0 - 1/3! * (x^3) , x_1 =0.9247
x_2: x_1 + 1/5! * (x^5) , x_2 =1.0043
x_3: x_2 - 1/7! * (x^7) , x_3 =0.9996
x_4: x_3 + 1/9! * (x^9) , x_4 =0.9997 , END
</scratch >
0.9997

Sqrt
Input:
sqrt (2.7174)
Target:
<scratch >
x_0=1
x_1: 1/2*(1+2.7175/1) =1.8587 , x_1 =1.8587
x_2: 1/2*(1.8587+2.7175/1.8587) =1.6603 , x_2
=1.6603
x_3: 1/2*(1.6603+2.7175/1.6603) =1.6485 , x_3
=1.6485
x_4: 1/2*(1.6485+2.7175/1.6485) =1.6484 , x_4
=1.6484 , END
</scratch >
0.6484

832

Figure 13: Examples of the detailed scratchpad format for different arithmetic tasks such as subtraction, sine,
multiplication, and square root.833

The results depicted in Figure 6 indicate that similar to the findings of addition, the detailed scratchpad834

format significantly improves performance over plain or reverse formats and yields efficient results835

even with few samples for subtraction and multiplication tasks. Interestingly, we find reverse is not836

particularly effective in multiplication. On the other hand, the detailed scratchpad format exhibits837

reduced efficiency for sin and √ compared to other operations (+,−,×). This discrepancy can be838

traced back to the complexity of the intermediate steps involved in the detailed scratchpad. While839

addition, subtraction, and multiplication are decomposed into simpler functions, sine and square840

20

root operations involve more intricate operations. For a broader analysis of the error profile, see841

Appendix 18.5.842

12.2 Jointly Training on All Five Arithmetic Tasks843

So far, we only considered the problem of learning different arithmetic operations individually. In844

this section, we study the effect of jointly training on all five arithmetic tasks - addition, subtrac-845

tion, multiplication, sine, and square root. We construct a single train dataset incorporating all846

task Dtrain = {D+
train,D

−
train,D

×
train,Dsin

train,D
√

train}, and randomize the sequence of tasks in our train847

samples. For example, a randomly chosen segment of the training data may exhibit a task order848

such as (+,−, sin .−,×,×,
√
, ...). We consider 10, 000 training examples for each task of addition,849

subtraction, sine, and square root and 3, 000 for multiplication.850

The model’s performance, after training on our joint dataset Dtrain, is evaluated in both zero-shot and851

few-shot settings. These results are also compared with the performance of models that were trained852

separately on each dataset (D+
train,D

−
train,D

×
train,Dsin

train,D
√

train), identical to those used to construct853

Dtrain. In the few-shot setting, each task is given examples from any of the five arithmetic tasks (not854

necessarily related to the test task under consideration) or prompt texts, followed by test queries855

specific to the task of interest. For further details on the few-shot prompting methods used, please856

refer to Section ??.857

Table 3 shows that joint training significantly enhances the zero-shot performance for multiplication858

and square root tasks, yet it slightly reduces the performance for subtraction. Generally, few-shot859

prompting exhibits improved performance. Notably, the performance of few-shot prompting remains860

consistent regardless of whether the exemplars provided are from unrelated tasks or are task-specific.861

We propose that this consistency is due to our randomized task sequence during training, which862

presents the model with numerous instances where one task directly follows another, thus simulating863

few-shot prompting with different tasks. Furthermore, we observe that text prompting performs864

similar to zero-shot. We conjecture that this is because the training data does not include text data865

and the model has never encountered text and therefore, text prompting serves as a random prefix866

attached to our test query.867

Table 3: Performance of models trained individually and jointly on five arithmetic tasks. The threshold ϵ for sin
and √ functions is set to 0. For the models trained jointly on all five tasks, we evaluate their performance in
both a zero-shot setting and a few-shot setting. In the few-shot setting, each task is presented with exemplars
from one of the five arithmetic tasks or prompted with text, followed by task-specific test queries. The results
show that few-shot prompting with any arithmetic operators (even unrelated to the test task) generally improves
performance. However, text prompting shows performance similar to the zero-shot setting.

Trained on
individual task

Trained jointly on all 5 tasks

Zero-shot Few-shot exemplar format
+ – × sin sqrt text

+ 84.06 87.96 96.45 96.90 96.92 97.06 97.01 88.71
– 79.97 72.83 81.28 79.59 81.39 81.84 81.74 68.91
× 4.58 14.28 18.86 18.96 15.43 19.20 19.59 15.48
sin 35.03 34.74 34.35 34.31 34.34 32.64 33.42 33.96
sqrt 19.85 27.37 26.65 26.74 26.70 25.60 25.61 26.02

21

13 Mixing Text with Arithmetic Data868

Until now, our focus was primarily on models trained exclusively on arithmetic tasks. However,869

in practice, large language models (LLMs) utilize a combination of arithmetic and text data for870

training. In this section, we broaden our scope by incorporating both addition samples and text into871

our pretraining data. We then evaluate the trained models with various few-shot prompts to analyze if872

the model is able to effectively identify the correct context.873

Experimental Setup. We mix addition and text data in our experiment using the Shakespeare874

dataset (Karpathy, 2015) that includes 1, 115, 394 tokens of text, 10, 000 plain addition examples875

(120, 027 tokens), and 3, 000 detailed scratchpad formatted addition examples (813, 510 tokens). We876

fix the number of detailed scratchpad examples and plain addition examples (3, 000 and 10, 000877

respectively) while varying the number of each example type in the training process. The Shakespeare878

text is segmented into dialogue chunks, with a random number of addition data inserted between879

them. We use a character-level tokenizer with a vocabulary size of 80, containing all characters880

present in the dataset, including alphabets, digits, and certain symbols like +,= and \n.881

13.1 Few-Shot Prompting882

Given the mixed nature (arithmetic and text) of our dataset, introducing relevant examples seems an883

effective strategy to prime the model to generate the desired type of output. To assess the performance884

of such few-shot (1/2/3−shot) prompting, we provide task-specific exemplars as illustrated in885

Figure 14. Plain addition formatted exemplars are used for testing plain addition inputs, while886

detailed scratchpad formatted exemplars are utilized for assessing performance on detailed scratchpad887

formatted inputs. Additionally, we experiment with demonstrating text (see Appendix 13.3. for888

details) before querying addition (which we denote, Text-prompt). For each 1/2/3-shot and text889

prompting, average performance is reported over a fixed set of exemplars. Standard deviations of890

these prompts are denoted by shaded areas in the plots. The term “few-shot” refers to the reported891

mean of all 1/2/3-shot prompting results.892

Figure 14: Few-shot prompting method. Few-shot prompting performance is evaluated by presenting relevant
exemplars of addition and detailed scratchpad formatted inputs. Each 1/2/3-shot prompting is tested on a fixed
five set of exemplars, and the accuracy is averaged over these evaluations.

Figure 15 shows that few-shot prompting directs the enhancement of performance, thereby allowing893

plain addition to perform almost perfectly with 40,000 train samples. Intriguingly, performance894

remains high on plain addition even with the inclusion of a text prompt, given a substantial number895

of addition examples. We hypothesize that this is due to the structure of our mixed dataset where896

addition examples are interspersed within Shakespeare data. With the incorporation of more addition897

examples, instances where addition examples directly follow Shakespeare text increase, leading to a898

decrease in potential inconsistencies when text content is present during addition test queries.899

13.2 Disentangling the effect of text on prompting900

To disentangle the effects of the textual content in the training data, we train a model strictly on plain901

addition, utilizing an enlarged vocabulary that also includes alphabet characters, thereby enabling text902

prompting. (Note that previous experimental settings on plain formatted additions used a vocabulary903

size of 13, which only includes 10 numerals and 3 symbols - “+”,“=”,“\n”). We introduce a variant904

22

(a) Test accuracy on plain addition

0 5k 10k 15k 20k 25k 30k 35k 40k
Number of Addition Samples

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

Zero-shot
1-shot
2-shot
3-shot
text_prompt

(b) Test accuracy on detailed scratchpad

1000 2000 3000 4000 5000
Number of Detailed Scratchpad Samples

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

Zero-shot
1-shot
2-shot
3-shot
text_prompt

Figure 15: Performance of NanoGPT model trained with the Shakespeare dataset, addition dataset in plain, and
detailed scratchpad format. The number of plain (left) and detailed scratchpad (right) formatted addition samples
are varied. Performance is evaluated on zero-shot, few-shot, and text prompts, with the shaded area representing
the standard deviation across various prompt exemplar sets. The results indicate a consistent enhancement in
model performance using few-shot prompting.

of few-shot prompting, termed as noisy-prompt, which prompts the model with erroneous addition905

exemplars, i.e., , A+ B = C, where C ̸= A+ B.906

0 5k 10k 15k 20k 25k 30k 35k 40k
Number of Addition Samples

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

Zero-shot
1-shot
2-shot
3-shot
Noisy-prompt
Text-prompt

Figure 16: Performance of NanoGPT model trained exclusively on plain addition, but with an extended
vocabulary including both addition and alphabets (vocabulary size = 80). Few-shot prompting, using both correct
addition examples (1, 2, 3-shot) and incorrect addition examples (noisy-prompt) leads to enhanced performance,
while the use of text prompts results in a degradation of performance when the model is trained solely on
addition.

Figure 16 shows that few-shot prompting contributes to performance enhancement even when the907

model is confined to training on a single plain addition task. Even in the presence of noisy prompting,908

simply providing the model with the A + B = C format yields performance nearly identical to few-909

shot prompting, aligning with the result observed by Min et al. (2022). Conversely, we notice that910

text prompts negatively influence performance when the model is trained only on addition. This911

finding reinforces our earlier observation in Figure 7 that the advantageous impact of text prompts912

originates from the combined text and addition data.913

13.3 Prompting with Text914

To extend on the few-shot prompting experiments from Section 12.2, we also evaluate the effect of915

prompting the model with pure-text prompts. If few-shot prompting with addition samples improves916

accuracy through in-context learning, we expect few-shot prompting with text to hurt accuracy since917

the text exemplars are out-of-context. We use five different types of text exemplars: (i) Prompt1: a918

short text prompt that is not present in the Shakespeare dataset, (ii) Prompt2: a short text prompt919

extracted from within Shakespeare dataset, (iii) Prompt3: a longer form text prompt extracted from920

within the Shakespeare dataset, (iv) Prompt4: a prompt that includes numbers, and (v) Prompt5: a921

long text prompt that is not present in the Shakespeare dataset. More details on the text prompts can922

be found in Figure 17.923

23

Text prompts for few-shot experiments

Examples of the different text prompts used in the few-shot experiment. Each
exemplar is separated by ‘---’.

Prompt 1. Short, /∈ Shakespeare
et tu brute

hello , world

how are you doing?

agi is coming

boom! stability

Prompt 2. Short, ∈ Shakespeare
JULIET:
Romeo!

All:
Resolved. resolved.

VOLUMNIA:
Why , I pray you?

CORIOLANUS:
Nay! prithee , woman ,--

MENENIUS:
I mean , thy general.

Prompt 3. Long, ∈ Shakespeare
JULIET:
Romeo!
ROMEO:
My dear?

MENENIUS:
This is good news:
I will go meet the ladies. This Volumnia
Is worth of consuls , senators , patricians ,

LADY ANNE:
Foul devil , for God 's sake , hence , and trouble
us not;

For thou hast made the happy earth thy hell ,
Fill 'd it with cursing cries and deep exclaims
.

BUCKINGHAM:
I fear he will.
How now , Catesby , what says your lord?

CATESBY:
Bad news , my lord: Ely is fled to Richmond;
And Buckingham , back 'd with the hardy Welshmen
,
Is in the field , and still his power
increaseth.

Prompt 4. Has number, /∈ Shakespeare
I go 16-12
That 's the code to my heart , ah
I go 1-6-1-2
Star

Like a river flows 17-23
Surely to the sea 15-22
Darling , so it goes 46-92
Some things are meant to be

I got my first real 6-string
Bought it at the five and dime
Played it 'til my fingers bled
Was the summer of '69

I think someday I might just 5-3-2-1 get a real job
I spent half of my life 1-2-3 in a bus or on a flight
I'm getting off 17-36-8-2 the road and in a real job

Every time that 27-67-29 I look in the mirror
All these lines on my 1-3-92-5 face getting clearer
The past 45-5-3 is gone

Prompt 5. Long, /∈ Shakespeare
Is this the real life? Is this just fantasy? Caught in a landside , no escape from
reality.
Open your eyes , look up to the skies and see.
I'm just a poor boy , I need no sympathy. Because I'm easy come , easy go,
Little high , little low ,
Any way the wind blows doesn 't really matter to me , to me.

It 's my life
And it's now or never
I ain 't gonna live forever
I just want to live while I'm alive
My heart is like an open highway
Like Frankie said , I did it my way

Destruction leads to a very rough road but it also breeds creation
And earthquakes are to a girl 's guitar , they 're just another good vibration
And tidal waves couldn 't save the world from Californication

924

24

I want to stay
But I need to go
I want to be the best for you
But I just don 't know what to do
'Cause baby , say I've cried for you
The time we have spent together
Riding through this English whether

Lorem ipsum dolor sit amet , consectetur adipiscing elit. Vestibulum mattis in leo
vel gravida.
Pellentesque libero elit , scelerisque varius vehicula a, hendrerit et tellus.
Proin convallis neque nisl , nec lobortis est scelerisque tincidunt.
Nunc venenatis auctor urna.
Class aptent taciti sociosqu ad litora torquent per conubia nostra.

925

Figure 17: Text prompt exemplars for few-shot experiments.
926

(a) NanoGPT, Test accuracy on plain addition

0 5k 10k 15k 20k 25k 30k 35k 40k
Number of Addition Samples

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

Zero-shot
Prompt1
Prompt2
Prompt3
Prompt4
Prompt5

(b) GPT-2, Test accuracy on plain addition

0 5k 10k 15k 20k 25k 30k 35k 40k
Number of Addition Samples

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

Zero-shot
Prompt1
Prompt2
Prompt3
Prompt4
Prompt5

(c) NanoGPT, Test accuracy on detailed scratchpad

1000 2000 3000 4000 5000
Number of Detailed Scratchpad Samples

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

Zero-shot
Prompt1
Prompt2
Prompt3
Prompt4
Prompt5

(d) GPT-2, Test accuracy on detailed scratchpad

1000 2000 3000 4000 5000
Number of Detailed Scratchpad Samples

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

Zero-shot
Prompt1
Prompt2
Prompt3
Prompt4
Prompt5

Figure 18: Experiments on few-shot prompting with different text prompts: (i) Prompt1: short text not
in Shakespeare dataset (ii) Prompt2: short text within Shakespeare dataset (iii) Prompt3: long text within
Shakespeare dataset (iv) Prompt4: text with numbers (v) Prompt5: long text not in the Shakespeare dataset. Each
prompt (Prompt 1-5) consists of five distinct exemplars. The solid lines represent the mean performance across
the five exemplars, while the shaded area indicates the standard deviation. We observe that the effectiveness of
text prompts varies greatly depending on the exemplars used.

The results presented in Figure 18 show notable variations in evaluation accuracy for addition,927

depending on the chosen text prompts. Longer text prompts (Prompt 5) typically result in a more928

significant decline in performance. With the exception of NanoGPT trained on plain addition, the929

result in Figure 19 indicates that employing text prompts followed by test addition queries tends to930

have an adverse impact on the overall model performance, whereas incorporating relevant few-shot931

exemplars (1/2/3-shot) is beneficial. This aligns well with our intuition on the benefits on in-context932

learning.933

25

(a) NanoGPT, Test accuracy on plain addition

0 5k 10k 15k 20k 25k 30k 35k 40k
Number of Addition Samples

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)
Zero-shot
1-shot
2-shot
3-shot
text_prompt

(b) GPT-2, Test accuracy on plain addition

0 5k 10k 15k 20k 25k 30k 35k 40k
Number of Addition Samples

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

Zero-shot
1-shot
2-shot
3-shot
text_prompt

(c) NanoGPT, Test accuracy on detailed scratchpad

1000 2000 3000 4000 5000
Number of Detailed Scratchpad Samples

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

Zero-shot
1-shot
2-shot
3-shot
text_prompt

(d) GPT-2, Test accuracy on detailed scratchpad

1000 2000 3000 4000 5000
Number of Detailed Scratchpad Samples

30

40

50

60

70

80

90

100

Te
st

 A
cc

ur
ac

y
(%

)

Zero-shot
1-shot
2-shot
3-shot
text_prompt

Figure 19: Performance of NanoGPT and GPT-2 model trained with entire Shakespeare dataset and a varying
number of samples of plain addition, and addition with detailed scratchpad dataset. Performance is evaluated on
test prompts formatted as plain addition and detailed scratchpad. Few-shot experiments are based on an average
of 5 exemplars, while text prompts involve an average of 25 exemplars. The shaded area represents the standard
deviation. Our observations indicate that few-shot prompting consistently improves performance, whereas test
prompts generally have a negative impact.

14 Fine-tuning, Scaling, and Pretraining in Larger Models934

This section focuses on bridging the gap between our experiments on NanoGPT and the more realistic935

setting of larger language models like GPT-2 and GPT-3. We begin by comparing the performance of936

NanoGPT and GPT-2 models when trained from random initialization. This comparison highlights937

the improved performance achieved with the larger model scale, especially in the zero-shot setting.938

Subsequently, we delve into the impact of tokenization methods and model pretraining in GPT-2939

models. Our exploration reveals the crucial role of pretrained models and the consistent tokenization940

of numbers (achieved by introducing spaces) during the training phase for arithmetic tasks. Building941

on these findings, we proceed to fine-tune a pretrained GPT-3 model on various arithmetic tasks,942

employing different data formats.943

Comparing NanoGPT and GPT-2. To examine the impact of scale on arithmetic performance,944

we explore a larger GPT-2 model with 85 million parameters, featuring twice as many self-attention945

layers, heads, and embedding size compared to the previously used NanoGPT model. We train946

the GPT-2 model from scratch using character-level tokenization, jointly on text and addition tasks,947

adopting both plain and detailed scratchpad formats; an approach mirroring the setting in Section ??.948

The results depicted in Figure 8 demonstrate that the larger model outperforms in both plain and949

detailed scratchpad evaluations. For a comprehensive analysis of GPT-2, including few-shot learning950

and the influence of text prompts, refer to Figure 18 and Figure 19.951

Going from character-level tokenization to BPE. The transition to a GPT-2 setup necessitates952

several modifications. Firstly, we shift to OpenAI’s Tiktoken BPE tokenizer, which is the default953

tokenizer for the pretrained GPT-2 model, featuring a vocabulary size of 50,257. We also examined954

two different training approaches: training the model from random initialization (scratch) and955

fine-tuning the pretrained model sourced from Huggingface. To ensure uniform digit tokenization,956

26

alterations were made in data formatting to include spaces between numbers. This change aims to957

circumvent potential inconsistent tokenization of numbers while utilizing the Tiktoken tokenizer.958

Figure 20 shows that GPT-2 demonstrates high performance in addition tasks with both character-level959

tokenization and Tiktoken with spaces between digits. This aligns with the results by Wallace et al.960

(2019), suggesting that character-level tokenization exhibits stronger numeracy capabilities compared961

to a word or sub-word methods. Furthermore, comparing the models trained from scratch and the962

models trained from the pretrained model, we observe that fine-tuning a pretrained model results in963

better performance compared to training a model from scratch.964

0 1000 2000 3000 4000 5000
Train Iterations

0

20

40

60

80
Te

st
 A

cc
ur

ac
y

(%
)

NanoGPT, char-level, scratch
GPT-2, char-level, scratch
GPT-2, tiktoken, scratch
GPT-2, tiktoken, pretrained
GPT-2, tiktoken+space, scratch
GPT-2, tiktoken+space, pretrained

Figure 20: Performance of various configurations of the GPT-2 model on the addition task. We compare
the effects of tokenization methods, specifically character-level tokenization versus Tiktoken (OpenAI’s BPE
tokenizer), training initialization (training from scratch versus training from a pretrained GPT-2 model), and the
inclusion or exclusion of spaces between numbers. The results highlight the significance of utilizing pretrained
models and incorporating spaces for consistent tokenization of numbers when training a model for arithmetic
tasks.

GPT-3 experiments: Supervised fine-tuning. We extend our experiments to verify if our observa-965

tions hold while fine-tuning larger pre-trained models. In the following, we consider three GPT-3966

variants: Ada, Curie, and Davinci. Note that since we perform fine-tuning using the OpenAI APIs, by967

default only the completions are loss generating tokens. Therefore, these experiments are slightly968

different when compared to the previous settings. We fine-tune these models using the same four969

data formatting methods as our NanoGPT experiments: (i) plain formatting, (ii) reverse formatting,970

(iii) simplified scratchpad, and (iv) detailed scratchpad. These formats are identical to those from our971

NanoGPT experiments except for one aspect. We introduce spaces between numbers in plain and972

reverse formatting to ensure consistent tokenization.973

Due to budget constraints, all experiments were conducted using a fine-tuning dataset of 1, 000974

examples, and models were trained for 4 epochs. Performance evaluation was carried out on 1, 000975

examples that were disjoint from the training dataset. Note that this training scale is significantly976

smaller than our experiments on NanoGPT, which employed 10, 000 training examples for 5, 000977

iterations, with evaluations conducted on 10, 000 test examples. However, given these models’978

extensive pretraining on large data corpora, this scale can be deemed rational.979

The results for addition and subtraction tasks are presented in Table 2 and Table 4, respectively. We980

observed that initiating with a pretrained GPT-3 model significantly improves performance compared981

to training NanoGPT or GPT-2 models from random initialization with only 1000 samples. This982

indicates the utility of leveraging pretrained models for improved arithmetic performance. Interest-983

ingly, while reverse formatting and simplified scratchpad formats improve addition performance,984

they adversely affect subtraction performance. This observation is consistent with our earlier finding985

depicted in Figure 12, wherein transitioning from one data format to another often results in lower986

performance compared to initiating training from random initialization. We postulate that this discrep-987

ancy may be due to the pretrained GPT-3 model’s requirement to adapt to the reversed approach and988

“unlearn” its knowledge of plain formatting arithmetic, thereby introducing additional complexity. On989

the other hand, the detailed scratchpad method achieves excellent performance, albeit with increased990

training and inference costs due to higher token requirements.991

27

Table 4: Evaluation of subtraction performance for fine-tuned GPT-3 models: Davinci, Curie, and Ada. In each
case, the model is finetuned on 1000 samples of addition in the corresponding format.

GPT-3 Model Zero-shot Plain Reverse Simplified Scratchpad Detailed Scratchpad

Davinci 0.1% 84.8% 66.0% 15.4% 99.5%
Curie 0.1% 24.1% 6% 3.8% 92.5%
Ada 0.0% 3.7% 2.6% 3.4% 81.5%

Table 5: Evaluation of sine and square root performance for fine-tuned GPT-3 models: Davinci, Curie, and Ada.
In each case, the model is finetuned on 1000 samples of addition in the corresponding format.

Sine Square Root

GPT-3 Model eps Zero-shot Plain Detailed Scratchpad Zero-shot Plain Detailed Scratchpad

Davinci
0 0% 11.0% 10.3% 0% 0.7% 4.6%

5e-4 0% 35.9% 29.7% 0% 7.5% 17.2%
5e-3 0.4% 85.5% 72.8% 0% 59% 60.5%

Curie
0 0.0% 8.6% 1.2% 0.0% 0.7% 2.1%

5e-4 0.4% 32.7% 5.4% 0.1% 6.5% 6.0%
5e-3 0.9% 80.8% 15% 0% 52.7% 30.2%

Ada
0 0.0% 5.8% 4.3% 0.0% 0.3% 2.7%

5e-4 0.0% 21.4% 9.1% 0.0% 3.8% 11.9%
5e-3 0.3% 67.8% 25.2% 0.0% 32.2% 45.8%

For the more complex sine and square root tasks as shown in Table 5, we found that training with992

only 1000 samples is insufficient to generate exact answers (eps=0). The GPT-3 model, fine-tuned993

with 1,000 samples, performs worse than the NanoGPT model trained with 10,000 samples. Further994

experiments with larger training datasets are necessary for deeper insights and improved performance995

on these tasks.996

It is worth mentioning that while few-shot prompting notably improves the performance of all997

three GPT-3 models, their zero-shot performance is quite poor (as shown in the leftmost column998

of the tables). However, post-training, few-shot prompting becomes less effective as OpenAI’s999

fine-tuning process trains the model on individual prompts and desired completions serially, rather1000

than in concatenation with multiple examples like in our NanoGPT experiments. Consequently, our1001

comparisons primarily focus on the zero-shot performances of each task.1002

15 Token Efficiency Across Data Formats1003

Figure 4a demonstrates that more detailed training data leads to improved sample efficiency. However,1004

this comparison does not account for the cost associated with training and inference. To address this,1005

we conduct a cost analysis based on the number of “unique” tokens encountered during training.1006

Each data sample is treated as a set of unique tokens, and the number of unique tokens is derived by1007

multiplying the number of samples with the tokens per sample. For instance, the mean token count for1008

a single training example in a 3-digit addition task is 13 for plain format, 15 for reverse format, 64 for1009

simplified scratchpad format, and 281 for detailed scratchpad format. Note that this calculation does1010

not evaluate uniqueness of tokens across samples i.e., if the first sample is “112 + 129 = 241” and1011

the second sample is “112 + 128 = 240”, we will still consider that the model has seen 26 unique1012

tokens even though only two tokens differ across samples. This approach ensures our cost calculation1013

accounts for a vanilla implementation of attention with no additional optimizations (Pope et al., 2023).1014

Table 6 presents the number of tokens required for prompting and completion in each data format,1015

per example. Evidently, the detailed scratchpad method uses considerably more tokens compared to1016

other techniques.1017

The result in Figure 4b indicates that reverse formatting is the most token-efficient approach. While1018

detailed scratchpad training is more sample efficient, it necessitates a larger number of tokens per1019

sample, both during training and inference. Given that the inference cost for commercial models is1020

28

determined by the number of tokens utilized per inference call (sum of prompting and completion1021

tokens), abundant use of models trained on detailed scratchpad formats may escalate overall costs.1022

Furthermore, since the cost of a single forward pass is cubic in the number of tokens, this is important1023

to consider. Therefore, for practical usage, it is crucial to evaluate both the number of samples needed1024

for achieving the desired performance and the actual token demands during training and inference.1025

Table 6: Token requirements for prompting and completion per single example of 3-digit addition.

Plain Reverse Simplified Scratchpad Detailed Scratchpad

Prompt 8 9 23 23
Completion 5 6 41 258
Total 13 15 64 281

16 Length Generalization1026

In this section, we present results from experiments conducted to assess the model’s ability to gener-1027

alize across different digit lengths. Initially, we exclude training examples featuring 2-digit operands1028

from the 10,000-sample addition dataset, yielding a reduced dataset of 7,655 samples, consisting1029

solely of 1 or 3-digit operands. The model is trained with reverse format and its performance is evalu-1030

ated on test dataset containing 100 random samples of 1-digit, 2-digit, 3-digit, and 4-digit additions.1031

The results in Figure 21 demonstrate that the NanoGPT model is incapable of performing 2-digit1032

and 4-digit additions. This suggests an inherent necessity for exposure to all digit combinations to1033

perform accurate calculations and lacks generalization capabilities for unseen digit lengths.1034

Additionally, we investigate the model’s ability to extrapolate over larger digit lengths. The model is1035

trained on 7-digit plain-formatted additions (each digit addition comprises 16650 samples, except1036

1-digit addition, which is trained on 100 samples). Its ability to add add 8-digit numbers is then put to1037

test. The results in Figure 21 show that the model is unable to generalize to a greater number of digits1038

beyond what it has been trained on. Similarly, when training the model on 10-digit binary numbers, it1039

fails to generalize to 11-digit binary additions, further confirming its limited ability to handle unseen1040

digit combinations.1041

(a) Trained on 1 and 3 digit addition

0 5000 10000 15000 20000
Iterations

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

1 digit
2 digit
3 digit
4 digit

(b) Trained on 1 – 7 digit addition

0 5000 10000 15000 20000
Iterations

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

) 1 digit
2 digit
3 digit
4 digit
5 digit
6 digit
7 digit
8 digit

Figure 21: Generalization experiments testing NanoGPT’s performance on unseen numbers of digits in addition
tasks. (Left): NanoGPT trained on reverse formatted addition with 1 and 3 digits, and tested on additions ranging
from 1 to 4 digits. (Right): NanoGPT trained on up to 7-digit plain formatted addition and tested on additions
ranging from 1 to 8 digits. In both cases, NanoGPT exhibits an inability to perform addition on digits it has not
been exposed to.

We further explore the impact of detailed scratchpad formatting. The model trained on additions of1042

up to 3 digits, struggles to generalize to 4-digit additions. Notably, it randomly drops a single digit1043

from the 4-digit number, erroneously perceiving it as a 3-digit number. We illustrate this difficulty1044

in Figure 22 through multiple detailed error cases, ranging from instances in which only the test1045

query is provided (Case 1) to scenarios where all intermediate steps are provided except only the final1046

answer (Case 5). The prompts are highlighted in light grey and the responses generated by our trained1047

29

NanoGPT model are highlighted in light green. These cases emphasize the model’s shortcomings in1048

accurately managing larger digit lengths.1049

Examples for length generalization prompts

Results obtained by prompting the NanoGPT model with larger digits than those
it was trained on. The model is trained using detailed scratchpad formats with
3-digit numbers. We evaluate its performance on 4-digit numbers, with varying
levels of provided information. The prompt input is highlighted in a light blue
box, while the model’s output is highlighted in a light green box.

Case 1: Just asking the question
Input:
8465+3541
Target:
<scratch>
[8,4,6] has 3 digits.
[3,5,1] has 3 digits.
[8,4,6] + [3,5,1] , A=[] , C=0 , 6+1+0=7 , A->7 , C->0
[8,4] + [3,5] , A=[7] , C=0 , 4+5+0=9 , A->9 , C->0
[8] + [3] , A=[9,7] , C=0 , 8+3+0=11 , A->1 , C->1
[] + [] , A=[1,9,7] C=1 , END
</scratch>
1 1 9 7

Case 2: Giving number of digits
Input:
8465+3541
Target:
<scratch >
[8,4,6,5] has 4 digits.
[3,5,4,1] has 4 digits.
[8,4,6] + [3,5,4] , A=[] , C=0 , 6+4+0=10 , A->0 , C->1
[8,4] + [3,5] , A=[0] , C=1 , 4+5+1=10 , A->0 , C->1
[8] + [3] , A=[0,0] , C=1 , 8+3+1=12 , A->2 , C->1
[] + [] , A=[2,0,0] C=1 , END
</scratch>
1 2 0 0

Case 3: Giving 1 intermediate steps
Input:
8465+3541
Target:
<scratch >
[8,4,6,5] has 4 digits.
[3,5,4,1] has 4 digits.
[8,4,6,5] + [3,5,4,1] , A=[] , C=0 , 5+1+0=6 , A->6 , C->0
[8,4] + [3,5] , A=[6] , C=0 , 4+5+0=9 , A->9 , C->0
[8] + [3] , A=[9,6] , C=0 , 8+3+0=11 , A->1 , C->1
[] + [] , A=[1,9,6] C=1 , END
</scratch>
1 1 9 6

Case 4: Giving all but one intermediate steps
Input:
8465+3541
Target:
<scratch >
[8,4,6,5] has 4 digits.
[3,5,4,1] has 4 digits.
[8,4,6,5] + [3,5,4,1] , A=[] , C=0 , 5+1+0=6 , A->6 , C->0
[8,4,6] + [3,5,4] , A=[6] , C=0 , 6+4+0=10 , A->0 , C->1
[8,4] + [3,5] , A=[0,6] , C=1 , 4+5+1=10 , A->0 , C->1
[8] + [3] , A=[0,0,6] , C=1 , 8+3+1=12 , A->2 , C->1
[] + [] , A=[2,0,6] C=1 END
</scratch>
1 0 0 6

Case 5: Giving all intermediate steps, all it has to do is aggregate the answer
Input:
8465+3541
Target:

1050

30

<scratch >
[8,4,6,5] has 4 digits.
[3,5,4,1] has 4 digits.
[8,4,6,5] + [3,5,4,1] , A=[] , C=0 , 5+1+0=6 , A->6 , C->0
[8,4,6] + [3,5,4] , A=[6] , C=0 , 6+4+0=10 , A->0 , C->1
[8,4] + [3,5] , A=[0,6] , C=1 , 4+5+1=10 , A->0 , C->1
[8] + [3] , A=[0,0,6] , C=1 , 8+3+1=12 , A->2 , C->1
[] + [] , A=[2,0,0,6] C=1 END
</scratch >
1 2 0 6

Case 6: Giving 1 in-context example
Input:
8465+3541
Target:
<scratch >
[8,4,6,5] has 4 digits.
[3,5,4,1] has 4 digits.
[8,4,6,5] + [3,5,4,1] , A=[] , C=0 , 5+1+0=6 , A->6 , C->0
[8,4,6] + [3,5,4] , A=[6] , C=0 , 6+4+0=10 , A->0 , C->1
[8,4] + [3,5] , A=[0,6] , C=1 , 4+5+1=10 , A->0 , C->1
[8] + [3] , A=[0,0,6] , C=1 , 8+3+1=12 , A->2 , C->1
[] + [] , A=[2,0,0,6] C=1 , END
</scratch >
1 2 0 0 6
Input:
1946+3598
Target:
<scratch>
[1,9,4] has 3 digits.
[3,5,8] has 3 digits.
[1,9,4] + [3,5,8] , A=[] , C=0 , 4+8+0=12 , A->2 , C->1
[1,9] + [3,5] , A=[2] , C=1 , 9+5+1=15 , A->5 , C->1
[1] + [3] , A=[5,2] , C=1 , 1+3+1=5 , A->5 , C->0
[] + [] , A=[5,5,2] C=0 , END
</scratch>
5 5 2

Case 7: Giving 1 In-context example, and all intermediate steps
Input:
8465+3541
Target:
<scratch >
[8,4,6,5] has 4 digits.
[3,5,4,1] has 4 digits.
[8,4,6,5] + [3,5,4,1] , A=[] , C=0 , 5+1+0=6 , A->6 , C->0
[8,4,6] + [3,5,4] , A=[6] , C=0 , 6+4+0=10 , A->0 , C->1
[8,4] + [3,5] , A=[0,6] , C=1 , 4+5+1=10 , A->0 , C->1
[8] + [3] , A=[0,0,6] , C=1 , 8+3+1=12 , A->2 , C->1
[] + [] , A=[2,0,0,6] C=1 , END
</scratch >
1 2 0 0 6
Input:
1946+3598
Target:
<scratch >
[1,9,4,6] has 4 digits.
[3,5,9,8] has 4 digits.
[1,9,4,6] + [3,5,9,8] , A=[] , C=0 , 6+8+0=14 , A->4 , C->1
[1,9,4] + [3,5,9] , A=[4] , C=1 , 4+9+1=14 , A->4 , C->1
[1,9] + [3,5] , A=[4,4] , C=1 , 9+5+1=15 , A->5 , C->1
[1] + [3] , A=[5,4,4] , C=1 , 1+3+1=5 , A->5 , C->0
[] + [] , A=[5,5,4,4] C=0 , END
</scratch >
5 5 4

1051

Figure 22: Example results on the model’s output when prompted with a larger number of digits than those it
was trained on.1052

31

17 Proofs1053

Here, we present the proofs of Lemma 1 and 2.1054

Lemma 1. Let A and B be two n-digit numbers, and let C = A + B. Suppose an algorithm A1055

outputs the digits of C in decreasing order of significance, then A must have access to all digits of A1056

and B starting from the first digit that it outputs.1057

Proof. We begin by assuming for contradiction that there does exist an algorithm Algo that does1058

not have access to all digits of A and B and still outputs C = A + B correctly for all n− digit1059

numbers A,B. Without loss of generality, say Algo does not have access to the k−th digit of A1060

where k ∈ [n] represents the position counting from the least significant digit. Then consider the1061

example B = (10n − 1) and (A = 000 . . . Ak00 . . . 0) where B is just the integer with n 9’s and A1062

is just 0’s with Ak in the kth position. If Ak = 0, then Cn+1 = 0, but if Ak = 1, then Cn+1 = 1.1063

Therefore, without access to the k−th digit of A, there exist examples where the algorithm will surely1064

make a mistake. Therefore, by contradiction such an Algo cannot exist.1065

Lemma 2. There exists an algorithm that computes C = A+B for two n-digit numbers A and B1066

and outputs its digits in increasing order of significance such that, at each position i, the algorithm1067

only requires access to the ith digits of A and B, as well as the carry-on from the previous position.1068

Proof. First note that the trivial algorithm for addition is exactly the proof of this Lemma. However,1069

we present a more formal argument below for completeness. Let A, B be n−digit numbers and1070

C = A+B be at most an (n+ 1) digit number. Define the digits of A,B, and C as Ai, Bi, and Ci,1071

respectively, for i ∈ [n] counting from the least significant digit once again. Then, the addition can be1072

performed using the following steps. First, Ci = (Ai +Bi + carryi) mod 10 where carryi is the1073

carry-on from the addition of digits at position i− 1. If there is no carry from the previous position,1074

then carryi = 0. The carry for the next position is then calculated as carryi+1 =
⌊
Ai+Bi+carryi

10

⌋
.1075

Putting this together, the algorithm for addition can be described as follows:1076

Step 1: Set carry1 = 0. Repeat for i = {1, . . . , n}: {Step 2: Compute Ci = (Ai +Bi + carryi)1077

mod 10 and carryi+1 =
⌊
Ai+Bi+carryi

10

⌋
, Step 3: Output Ci}.1078

It is easy to see that this algorithm computes the digits of the sum C correctly and requires only the1079

individual digits at position i and the carry from the previous position. Therefore, this algorithm1080

satisfies the conditions of the lemma.1081

32

18 Additional Experiments1082

18.1 Zero-Padding and Symbol Wrapping1083

As discussed briefly in Section 2, we found a significant benefit to using padding for multi-digit1084

addition. Throughout our experiments, we use the plain format without any such padding (denoted as1085

“vanilla” below) as the default baseline representing the conventional data format used in training.1086

Nonetheless, we explore modifications to this plain format to enhance performance; zero-padding,1087

and wrapping with a single symbol. Zero-padding ensures a fixed length for operands and the1088

output. In the case of 3-digit addition, this means 3-digit operands and a 4-digit output. For1089

example, ‘112+ 29 = 141’ becomes ‘112+ 029 = 0141’. As shown in Table 7. this modification1090

significantly improves model performance. Next, we wrap each sample using the ‘$’ symbol as in1091

’$112+ 29 = 141$’. We found this performs on par with zero-padding.1092

As a result, we adopt the ‘$’ symbol for efficient data delimiter, extending its use to the reverse format.1093

Figure 23 shows ‘$’-wrapping also enhances the performance of the reverse format. Despite the1094

plain format being improved with the ‘$’ delimiter, it remains short of the reverse format’s accuracy1095

and sample efficiency. We continue to maintain the original plain format as a baseline since it not1096

only exemplifies conventional data but further emphasizes the need for improved data formatting to1097

ensure efficient training. As such, for the reverse format, we have incorporated the ‘$’ delimiter in1098

our formatting modifications.1099

Table 7: Test accuracy of NanoGPT model on 3-digit addition trained on 10, 000 samples of plain format data,
comparing (i) vanilla format without modifications, (ii) Zero-padding format, and (iii) ‘$’-wrapped format.
The results show significant performance enhancement through zero-padding for fixed length and similar
improvements when deploying a single-symbol wrapping.

Vanilla Zero-pad ‘$’-Wrapped

88.17% 97.74% 97.76%

2000 4000 6000 8000 10000
Number of train examples

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

reverse, with $
reverse, wihout $
plain, with $
plain, wihout $

Figure 23: Performance of NanoGPT model on 3-digit addition using plain and reverse format, both with
and without ‘$’ delimiter. The addition of the ‘$’ symbol noticeably enhances performance in both formats.
Nevertheless, the plain format underperforms compared to the reverse format, particularly in terms of sample
efficiency. While we maintain the original plain format as a baseline – emphasizing the necessity for improved
data formatting for efficient emergence – we incorporate the ‘$’ wrapping in our modified reverse format.

33

18.2 Low-Rank Matrix Completion1100

In our Low-Rank Matrix Completion experiment for the addition matrix (which is of rank-2), we1101

employ an iterative algorithm proposed by Király et al. (2015). This algorithm systematically searches1102

for a 2× 2 submatrix in which three entries are known and one entry is unknown. It then fills the1103

unknown entry to ensure that the determinant of the 2×2 submatrix becomes zero, where the solution1104

is known to be optimal. We present the full pseudo-code in Algorithm 1.1105

To assess the performance of the algorithm, we generate n× n addition matrices for various values1106

of n (e.g., 20, 50, 100, 500). We vary the number of revealed entries, randomly sampling a sparse1107

matrix where only a specified number of entries between n and n×n are known, while the remaining1108

entries are set to zero. We repeat this process 100 times for each number of revealed entries, tracking1109

the algorithm’s success or failure in finding the solution. We calculate the average success rate across1110

the trials and present the success probabilities in Figure 3a, where we observe a sharp phase transition1111

when O(n) entries are observed, as expected.1112

Algorithm 1: Iterative 2× 2 Matrix Completion Algorithm
Data: Data Matrix M ∈ Rn×n with partially revealed entries. Assumed to be of Rank 2.
Result: M̂ ∈ Rn×n, Success/Fail.

1 n1 ← 1 represents number of resolved submatrices.
2 n2 ← 0 represents number of unresolved submatrices.
3 M̂ ←M
4 while n1 ≥ 1 do

/* As long as we resolved at least one submatrix in the previous iteration */
5 n1 ← 0
6 n2 ← 0
7 for i = 1 to n do
8 for j = 1 to n do

/* do something */
9

10 if M̂i,j is not revealed and all its neighbors are revealed then
11 M̂i,j =

M̂i+1,j×M̂i,j+1

M̂i+1,j+1

12 n1 ← n1 + 1

13 if M̂i+1,j is not revealed and all its neighbors are revealed then
14 M̂i+1,j =

M̂i,j×M̂i+1,j+1

M̂i+1,j

15 n1 ← n1 + 1

16 if M̂i+1,j+1 is not revealed and all its neighbors are revealed then
17 M̂i+1,j+1 =

M̂i+1,j×M̂i,j+1

M̂i,j

18 n1 ← n1 + 1

19 if M̂i,j ,M̂i+1,j ,M̂i,j+1,M̂i+1,j+1 are all revealed then
20 continue
21 else
22 n2 ← n2 + 1

23 if n2 > 0 then
24 return M̂ , Fail

25 else
26 return M̂ , Success

18.2.1 Generalizing to unseen digits1113

Building upon the model’s robustness to excluded numbers, we further investigate its ability to handle1114

excluded digits. Intuitively, this should be even more challenging since excluding a digit means the1115

model cannot learn directly how to operate in that position. Instead, it would have to generalize and1116

34

infer that digits act similarly across all positions. We construct datasets with the number 5 excluded1117

in 1st (LSB), 2nd, and 3rd (MSB) positions, and train separate models on each of these datasets.1118

We compare the resulting models by evaluating overall accuracy on a test set of 10, 000 randomly1119

sampled numbers, as well as their accuracy specifically on samples with 5 in each position which we1120

call exclusion accuracy.1121

The results presented in Table 8 indicate that the model is not as robust to excluding digits compared1122

to excluding numbers. However, it still achieves more than 66% accuracy on every test and maintains1123

an overall accuracy above 85%. Moreover, it appears that excluding a number in the least significant1124

position yields the worst performance. This can be attributed to the fact that learning addition in this1125

position is transferable to other positions since it is unaffected by carry-on operations. Failing to1126

learn addition in this position, however, will have a detrimental impact on other positions as well.1127

Table 8: Impact of excluding digits on addition task: We investigate whether GPT-based models can infer
addition on an excluded digit in a specific position from training data on other positions. We compare NanoGPT
models trained with and without an excluded digit and find that excluding digits is harder to learn but not entirely
impossible, with the worst performance observed when excluding the least significant digit.

Excluded position
Input

format Overall Acc
“5” in the

1st (LSB) digit
“5” in the
2nd digit

“5” in the
3rd (MSB) digit

No exclusion Plain 87.18% 87.50% 88.65% 91.80%
Reverse 99.97% 99.90% 99.95% 100%

1st (LSB) digit Plain 85.05% 76.70% 85.80% 88.35%
Reverse 93.31% 66% 94.80% 94.45%

2nd digit Plain 85.44% 84.55% 78.50% 90.15%
Reverse 98.85% 98.85% 94.20% 99.50%

3rd (MSB) digit Plain 85.70% 85.35% 87.35% 83.45%
Reverse 97.18% 97.25% 97.35% 85.45%

18.3 The Importance of Intermediate Step Design1128

In this section, we underscore the significance of meticulously designing the intermediate steps in1129

a Chain-of-Thought manner. Specifically, we investigate whether the enhanced sample efficiency1130

of NanoGPT in detailed scratchpad format arises from its longer length or from the breakdown of1131

intermediate steps into simpler components.1132

Randomizing the intermediate steps To discern the impact of length, we modify the intermediate1133

steps, replacing them with either a uniform token “#” or random tokens within the vocabulary (see1134

examples in Figure 24).1135

0 2.5k 5k 7.5k 10k 12.5k 15k 17.5k 20k
Number of train examples

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

vanilla scratchpad
intermediate steps - "#"
intermediate steps - random

Figure 24: Replacing the intermediate steps with random characters. We ablate whether the sample efficiency
gain from the detailed scratchpad stems from the increased length in the format.

The results (Figure 24) indicate that the sample efficiency of the vanilla detailed scratchpad surpasses1136

the modified versions. This suggests that the advantage of detailed scratchpad format stems from the1137

breakdown into simpler functions rather than its increased length.1138

Subtraction - two different intermediate step design We further focus on the subtraction task and1139

conduct experiments to compare two different versions of the detailed scratchpad for this operation1140

(see examples in Figure 25). These trials shed light on the importance of decomposing the subtraction1141

35

task into simpler intermediate steps. Unlike addition, subtraction behaves differently depending on1142

whether the first operand (a) is greater than the second operand (b) or vice versa.1143

The first strategy (Version 1 in Figure 25) involves performing digit-wise subtraction starting from the1144

least significant bit (LSB) and considering borrows when necessary. However, this strategy produces1145

incorrect results when the first operand is smaller than the second operand. In such cases, we subtract1146

the number in the most significant bit (MSB) position multiplied by 10 to the power of (number1147

of digits in the output - 1) from the remaining digits in the output. An example illustrating this1148

approach is shown in Version 1, Case 2. Alternatively, we can adopt a more familiar strategy. If1149

the first operand is smaller than the second, we swap the operands and compute the negation of the1150

subtraction of the swapped operands: a− b = −(b− a) (referred to as Version 2).1151

The results in Figure 26 indicate that Version 2, which involves comparing two operands, performs1152

considerably worse than Version 1. In Version 1, each intermediate step only requires the simpler1153

1-digit subtraction, along with addition in the final result processing step. Upon analyzing the failure1154

cases of Version 2, we observe that the majority of errors stem from incorrectly identifying which of1155

the two operands is larger, while the intermediate steps are handled correctly. This finding underscores1156

the significance of breaking down arithmetic operations into simpler intermediate steps. Unless1157

otherwise specified, we use Version 1 in all detailed scratchpad experiments.1158

Detailed scratchpad formatting for different arithmetic tasks

Examples of two variations of detailed scratchpad formatting for subtraction, considering the scenario
where the first operand a is greater than the second operand b, and vice versa. In Version 1, a result
processing step is included in the final stage to handle negative outputs. In Version 2, the operands are
compared at the beginning, and if b is larger, their order is reversed.

Prompt (Case 1. a− b ≥ 0) :
Input:
367-128
Target:

Version 1.
...
<scratch >
[3,6,7] has 3 digits.
[1,2,8] has 3 digits.
[3,6,7] - [1,2,8] , A=[] , C=0 ,
7 -8 -0+10=9 , A->9 , C->-1
[3,6] - [1,2] , A=[9] , C=-1 , 6-2-1=3 , A
->3 , C->0
[3] - [1] , A=[3,9] , C=0 , 3-1-0=2 , A->2
, C->0

[] - [] , A=[2,3,9]
200+39=239 , END # result processing
</scratch >
2 3 9

Version 2.
...
<scratch >
[3,6,7] has 3 digits.
[1,2,8] has 3 digits.
367 >=128 # comparison of two operands
[3,6,7] - [1,2,8] , A=[] , C=0 ,
7 -8 -0+10=9 , A->9 , C->-1
[3,6] - [1,2] , A=[9] , C=-1 , 6-2-1=3 , A
->3 , C->0
[3] - [1] , A=[3,9] , C=0 , 3-1-0=2 , A->2
, C->0

[] - [] , A=[2,3,9] , END
</scratch >
2 3 9

Prompt (Case 2. a− b < 0) :
Input:
128-367
Target:

Version 1.
...
<scratch >
[1,2,8] has 3 digits.
[3,6,7] has 3 digits.
[1,2,8] - [3,6,7] , A=[] , C=0 , 8-7-0=1 ,
A->1 , C->0

[1,2] - [3,6] , A=[1] , C=0 , 2 -6 -0+10=6 ,
A->6 , C->-1

[1] - [3] , A=[6,1] , C=-1 , 1-3-1=-3 , A
->-3 , C->-1
[] - [] , A=[-3,6,1]
-300+61= -239 , END # result processing
</scratch >
-2 3 9

Version 2.
...
<scratch >
[1,2,8] has 3 digits.
[3,6,7] has 3 digits.
128 <367 : 128 -367= -(367 -128) # comparison
[3,6,7] - [1,2,8] , A=[] , C=0 ,
7 -8 -0+10=9 , A->9 , C->-1
[3,6] - [1,2] , A=[9] , C=-1 , 6-2-1=3 , A
->3 , C->0
[3] - [1] , A=[3,9] , C=0 , 3-1-0=2 , A->2
, C->0

[] - [] , A=[2,3,9] , END
</scratch >
-2 3 9

1159

36

Figure 25: Two versions of detailed scratchpad formatting for subtraction.
1160

Plain Reverse (DS)Ver.1 (DS)Ver.2
Data Formatting Methods

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Te
st

 A
cc

ur
ac

y
(%

)

80.5%

99.6% 100.0%

89.9%

Figure 26: Comparison of performance among various data formatting approaches (plain, reverse, and two
versions of detailed scratchpad (DS)) for the subtraction task. The experiments were conducted on a NanoGPT
model trained on a dataset of 10,000 examples. Version 2, which incorporates operand comparison, exhibits
significantly lower performance compared to Version 1. This observation highlights the substantial impact of the
construction of intermediate steps on the model’s performance.
18.4 The Effect of Noisy Inputs on Accuracy1161

(a) Test accuracy on Addition

2000 4000 6000 8000 10000 12000
Number of train examples

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

correct A & C
random A
random C
random A & C

(b) Test accuracy on Subtraction

2000 4000 6000 8000 10000 12000
Number of train examples

0

20

40

60

80

100
Te

st
 A

cc
ur

ac
y

(%
)

correct A & C
random A
random C
random A & C

Figure 27: Comparison of training with simplified scratchpad formatting using correct A and C information with
formatting using random A/C and their effect on sample efficiency and accuracy. Results show that noisy labels
degrade sample efficiency, but with sufficient training data, the model eventually reaches full accuracy.

Noisy intermediate steps in the scratchpad data. We further investigate the significance of1162

providing accurate intermediate steps in the scratchpad during the training process. While this was1163

inspired by the findings of Min et al. (2022), it is inherently different. Min et al. (2022) show that1164

using random labels in ICL demonstrations caused minimal degradation when compared to the gold1165

labels. However, those models were trained on gold labels and then evaluated on multiple downstream1166

tasks. In our setting, the model is trained and evaluated on a single arithmetic task. Further, the1167

final result(or label) is left untouched as the correct answer to the arithmetic operation. We only1168

replace the intermediate steps. The goal of this study is to verify whether the model actually learns to1169

reason using the given intermediate steps or merely uses the scratchpad to improve its expressivity.1170

We compare the performance of training with our simplified scratchpad formatting, which includes1171

accurate A (digit sum) and C (carry) information, with formatting that includes random A, random1172

C, or random A and C for each intermediate step, as depicted in Figure 1.1173

The results in Figure 27, demonstrate that the inclusion of noisy labels can impede sample efficiency.1174

However, with enough samples, the model ultimately achieves full accuracy. This suggests that while1175

the model is capable of leveraging the information contained in the intermediate steps, it can also1176

gradually learn how to perform addition while disregarding the presence of noisy intermediate steps.1177

Model robustness to noise in the auto-regressive output. In this analysis, we explore the1178

robustness of models trained on plain or reverse formatted data (without noise) when exposed to1179

noise during an auto-regressive generation process. In particular, we aim to unravel how much the1180

learned mapping of the i-th output relies on the operands and preceding tokens in the addition result,1181

37

given that transformer models generate tokens sequentially in an autoregressive manner, making them1182

prone to error propagation.1183

For this experiment, we focus on 3-digit addition. We train models on either plain or reverse format1184

data and evaluate the accuracy of next-token predictions when the output sequence contains noise.1185

Specifically, in the plain format setting, we expect a well-performing model to generate the correct1186

output tokens O3, O2, O1 sequentially, where O3 = C3, O2 = C2, O1 = C1, and C3C2C1 represents1187

the correct answer. We consider two types of perturbation: (i) random perturbation, where we1188

modify the first two output tokens O3O2 to random numbers different from C3C2, and (ii) precise1189

perturbation, where we perturb only the second output token O2 by 1. The second case is particularly1190

relevant since a common error case is where the model misses a digit by 1. We provide the model with1191

an expression of the form “A3A2A1 + B3B2B1 = O3O2”, where O3O2 can be either (i) a random1192

incorrect number, i.e., O3O2 ̸= C3C2, or (ii) O2 = C2 ± 1 mod 10, and observe the next token1193

generated by the model. A corresponding process is deployed for the reverse format, introducing a1194

noisy sequence to models trained on reverse format data.1195

To evaluate the performance, we define two accuracy criteria for O1: exact accuracy, reckoning1196

O1 as accurate only when O1 = C1, and relaxed accuracy, considering O1 correct if it deviates1197

from the original output C1 by at most 1. In other words, C1 = O1, C1 = O1 + 1 mod 10 or1198

C1 = O1 − 1 mod 10.1199

Table 9: Prediction accuracy for the third digit output under different types of noise in the preceding output
tokens. Random perturbation, applies random flips whereas precise perturbation shifts the preceding output
tokens by 1. Relaxed accuracy, allows for a±1 deviation from the true output whereas Exact accuracy is strict.
Reverse consistently outputs a number that is at most 1 different from the true output, even in the presence of
noise. The plain format has high exact accuracy in the presence of precise perturbation, as the noise in the output
token has a lower impact on predicting the next token, which is of lower significance. However, with completely
random noise, the plain format shows poor performance, suggesting a strong dependence on all digits. (See
Lemma 1 and 2).

Perturbation Type Random Precise
Plain Reverse Plain Reverse

Exact Acc 49.88% 81.26% 99.85% 90.47%
Relaxed Acc 61.55% 100% 100% 100%

The results presented in Table 9 reveal intriguing findings. We observe that the reverse format1200

consistently outputs a result that deviates by no more than 1 from the true answer, regardless1201

of whether the preceding outputs O3O2 are subjected to random or precise perturbation. This1202

consistency can be explained by Lemma 2, indicating that the reverse format only requires learning1203

a straightforward function of digit-wise addition for each corresponding position, along with the1204

carry-on (0 or 1). Therefore, even with noise in the preceding tokens, the model accurately performs1205

digit-wise addition, albeit with occasional carry-on prediction errors. With an exact accuracy of1206

81.26% even in the presence of random perturbation, the reverse format demonstrates the model’s1207

ability to rely less on the preceding output tokens, indicating a robust learned output mapping.1208

On the contrary, models using the plain format have to decipher a more intricate function drawing1209

from all digits within the sequence, as described by Lemma 1. Given that in addition, carry operations1210

transition from right to left (i.e., least to most significant digit), the introduction of precise perturbation1211

on preceding output tokens, which possess higher significance, has a minor impact on the output1212

(which has less significance). As a result, models trained using the plain format attain an exact1213

accuracy rate of 99.85% and a relaxed accuracy of 100% for cases involving precise perturbation.1214

Interestingly, under purely random perturbation, the plain format struggles, leading to a reduced1215

relaxed accuracy of 61.55% and exact accuracy of 49.88%. This suggests that the output mapping1216

learned by the plain format is not merely a function of the two operands but rather enmeshed in1217

complex dependencies on preceding output tokens.1218

18.5 Analyzing the results on Sine/Sqrt1219

Since sine and sqrt are arguably more complicated functions than the remaining arithmetic tasks, we1220

decided to more carefully analyze their performance. As shown in Figure 28, sin shows excellent1221

performance across all data formats around sin(x) = 0. We conjecture that this is because sin(x) ≈ x1222

38

for x ≈ 0, which is easy to learn. We also note that accuracy once again improves close to ±11223

potentially for similar reasons.1224

(a) Test accuracy on Sine

1.00 0.75 0.50 0.250.00 0.25 0.50 0.75 1.00
true y value

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

Sin

plain, =0
ar, =0
plain, =5e-4
ar, =5e-4

(b) Test accuracy on Square root

1.0 1.5 2.0 2.5 3.0
true y value

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

Sqrt

plain, =0
CoT, =0
plain, =5e-4
CoT, =5e-4

Figure 28: Error analysis of sine and square root functions, considering varying error tolerance (eps) thresholds
to determine correct output. The sine function demonstrates excellent performance across all data formats,
particularly around sin(x) = 0, where sin(x) ≈ x for x ≈ 0. Additionally, we observe improved accuracy near
±1.

39

19 Experimental Setup1225

In this section, we summarize the datasets, models and hyperparameters used for experiments. All1226

of our experiments on NanoGPT and GPT-2 models are run using PyTorch 2.1 and CUDA 11.7 on1227

Nvidia 2808 TIs and NVIDIA 3090s. Detailed dependencies are provided on our github repository2.1228

19.1 Dataset1229

In this section, we explain the details of the datasets used for our experiments. For arithmetic tasks,1230

we construct our own datasets as described below while we use the standard shakespeare (Karpathy,1231

2015) dataset for text.1232

Arithmetic Tasks As mentioned above, for all arithmetic tasks, we prepare our own datasets.1233

We refer to the training dataset for a binary operator f(·) as Dtrain = {(x1
i , x

2
i), yi}Ni=1 where1234

yi = f(x1
i , x

2
i). Similarly, the test dataset Dtest is constructed by randomly sampling pairs of1235

operands that do not appear in Dtrain. During both training and inference, we then apply different1236

formatting techniques (see Section 2), to construct the final sequence that is input to the model. We1237

would like to repeat that both the careful choice of samples in the training dataset as well as their1238

formatting play a crucial role in the final performance of the model.1239

Text For text data, we use the Shakespeare dataset which was introduced by Karpathy (2015)1240

originally featured in the blog post “The Unreasonable Effectiveness of Recurrent Neural Networks”.1241

It consists of 40,000 lines of dialogue carefully curated from William Shakespeare’s plays. The dataset1242

comprises of a total of 1,115,394 characters and 64 unique tokens(when using the character-level1243

tokenizer that we employed in all NanoGPT experiments).1244

19.1.1 Data Balancing1245

As mentioned in Section 2, we carefully sample our data to ensure that they are “balanced” with1246

respect to the number of carries and number of digits. As mentioned earlier, sampling the operands1247

uniformly at random would lead to an extremely skewed dataset. To avoid this, we try to (i) Balance1248

digits by sampling lower-digit numbers with higher weights and (ii) Balance carry-ons by sampling1249

such that we have equal number of examples with 0, 1, 2 and 3 carry-on operations3.1250

Specifically, we create a balanced dataset of 10, 000 samples. This dataset includes all 100 1-digit1251

additions and a random sampling of 900 2-digit additions (including both (2 + 1) and (1 + 2)1252

digit additions) and 9, 000 3-digit additions. For the 3-digit addition samples, we employ rejection1253

sampling to ensure an equal distribution of carry-ons (0, 1, 2, or 3). For the test dataset, we uniformly1254

sample 10, 000 addition examples that do not overlap with the train dataset. Results in Figure 2 and1255

Table 10 demonstrate a clear advantage of the employed data balancing methods.1256

For the train dataset, we follow a specific approach based on the number of examples. For sample1257

sizes smaller than 10, 000 (e.g., 500, 1, 000, 2, 000, 3, 000, 4, 000, 5, 000), we include all 1-digit1258

additions and a proportionate number of 2-digit samples (e.g., for a total of 5, 000 samples, we1259

include 900 × 5, 000/10, 000 = 450 two-digit additions). The remaining samples are filled with1260

3-digit additions from the constructed train dataset of 10,000 samples. For sample sizes larger than1261

10,000 (e.g., 20,000, 40,000), we include all examples from the 10,000-sample train dataset and then1262

add additional samples as needed. Similar to before, we perform rejection sampling to maintain an1263

equal number of carry operations. Table 11. provides detailed information on the number of samples1264

with 1-digit, 2-digit, and 3-digit additions, as well as the number of carry-ons.1265

For the other arithmetic operations (subtraction, multiplication, sine, and square root), we construct1266

the train dataset using the following approach: (i) For subtraction, we use the same pairs of operands1267

that were used for addition. (ii) For multiplication, we include all 100 cases of a 1-digit number1268

multiplied by a 1-digit number. Additionally, we randomly sample multiplications involving operands1269

of up to 2 digits. (iii) For sine, we sample a random number in [π/2, π/2] and truncate it to 4 decimal1270

2https://anonymous.4open.science/r/nanoGPT-25D2
3In this paper, we adopt the definition that a carry-on operation involves transferring information from

one digit position to another position of higher significance. Therefore, we refer to the “borrow” operation in
subtraction as a carry operation.

40

https://anonymous.4open.science/r/nanoGPT-25D2

places. (iv) For square root, we sample a random number between [1, 10] and truncate it to 4 decimal1271

places. For the test dataset, we sample 10, 000 data points (7, 000 for multiplication) that do not1272

overlap with the train dataset.1273

Table 10: Performance of addition on various data sampling methods used: (i) Random - uniform sampling of
operands; (ii) Balanced digits - sampling more 1 and 2-digit operations ; (iii) Balanced carry - balancing the
dataset to contain an equal number of carry-on operations. Experiments on addition with zero-padding each
operand and output to have 3 and 4 digits, respectively. We observe that balancing the dataset can significantly
improve the performance or arithmetic operations.

Data Sampling Overall 1-digit 2-digit Carry-0 Carry-1 Carry-2 Carry-3

Random 97.74 98.00 96.20 95.88 98.61 98.74 94.98
Balanced Digits 98.13 100.00 99.70 98.87 98.64 98.13 95.93
Balanced Carry-Ons 98.29 100.00 99.70 98.38 97.56 99.02 98.22

Table 11: Number of examples of digit 1/2/3 and 0/1/2/3 carry-ons for NanoGPT experiments on addition for
different number of samples varying from 500 to 40, 000.

Total number 1-digit 2-digit 3-digit 0-carry-ons 1-carry-ons 2-carry-ons 3-carry-ons

500 100 45 355 163 141 97 99
1000 100 90 810 283 268 236 213
2000 100 180 1720 535 502 481 482
3000 100 270 2630 781 782 748 689
4000 100 360 3540 1020 1016 958 1006
5000 100 450 4450 1279 1271 1229 1221

10000 100 900 9000 2500 2500 2500 2500
20000 121 1937 17942 5000 5000 5000 5000
40000 132 3939 35929 10000 10000 10000 10000

19.1.2 Data Formatting1274

For each of the four formatting techniques, as applied to each arithmetic operation we provide the1275

details below. (i) Plain refers to the simplest formatting where we simply create a sequence as the1276

mathematical representation of the corresponding operation (e.g., A3A2A1 + B3B1B1 = C3C2C1).1277

For (ii) Reverse, we simply reverse the digits of the output so that they appear in increasing order1278

from LSB to MSB (e.g., $A3A2A1 + B3B1B1 = C1C2C3$). (iii) Simplified Scratchpad and (iv)1279

Detailed Scratchpad provide algorithmic reasoning steps like (Nye et al., 2021; Zhou et al., 2022b)1280

so as to help the model get more “information” per sample. Our intuition is that this approach nudges1281

the model towards actually learning the algorithm of addition or subtraction rather than merely trying1282

to fit the training examples. Refer to Appendix 20 for detailed examples of data formatting for each1283

arithmetic operation.1284

41

Different data formatting methods for addition

Four input formatting methods used for the addition task:
(i) Plain: standard formatting of addition
(ii) Reverse: flips the order of the output and encapsulates each data sample with the‘$’ symbol
at the start and end.
(iii) Simplified Scratchpad: provides carry and digit-sum information for each step of addition,
from the LSB to the MSB4.
(iv) Detailed Scratchpad: provides explicit details of intermediate steps of addition.

Plain
128+367=495

Reverse
$128 +367=594$

Simplified Scratchpad
Input: 128+367
Target:
A->5 , C->1
A->9 , C->0
A->4 , C->0.
495

Detailed Scratchpad
Input:
128+367
Target:
<scratch >
[1,2,8] has 3 digits.
[3,6,7] has 3 digits.
[1,2,8] + [3,6,7] , C=0, 8+7+0=15 , A->5, C->1
[1,2] + [3, 6] , A= [5], 2+6+1=9 , A->9, C->0
[1] + [3] , A= [9,5] , C=0 , 1+3+0=4 , A->4 , C->0
[] + [] , A= [4,9,5] , C=0 , END
</scratch >
4 9 5

1285

Figure 29: The four input formatting methods used for the addition task. We progressively increase the amount
of detail with each format.1286

1287

Note that we wrap each data sample in the reverse format with the ‘$’ symbol at the beginning and end1288

as a delimiter. We originally observed improved performance in both the plain and reverse formats1289

when the operands and outputs were zero-padded to a fixed length (e.g., 3 and 4 digits, respectively,1290

for 3-digit addition). But later realized that a single symbol can effectively replace zero-padding.1291

While we maintain the original plain format without padding as a baseline – emphasizing the necessity1292

for improved data formatting for efficient emergence – we incorporate the ‘$’-encapsulation in our1293

modified reverse format. For further details, refer to Appendix 18.1.1294

Addition (+). We focus on additions of positive numbers up to 3-digits, in which the plain1295

formatting would look like A3A2A1 + B3B1B1 = C3C2C1. For experiments on comparing data1296

sampling presented in Figure 2, we pad the two operands and the output with zero, to be of length 31297

and 4 respectively. For all other experiments, we do not utilize zero-padding. For Scratchpad-based1298

methods (iii, iv), we provide the digit-wise addition (denoted as A) and carry-on (denoted as C)1299

information for intermediate steps from the least significant bit (LSB) to the most significant bit1300

(MSB).1301

Subtraction (−). We consider subtraction of positive numbers up to 3 digits, written as1302

A3A2A1 − B3B2B1 = C3C2C1 in (i) plain formatting, and $A3A2A1 − B3B1B1 = C1C2C3$ in (ii)1303

reverse formatting. As with addition, scratchpad-based methods (iii, iv), present the intermediate steps1304

of digit-wise subtraction and handling of carry-ons. These steps proceed from the least significant1305

bit (LSB) to the most significant bit (MSB). If the final result after computing all the digit-wise1306

subtractions is negative, we subtract the number in the most significant bit (MSB) position multiplied1307

by 10 to the power of (number of digits in the output - 1) from the remaining digits in the output. In1308

Section 18.3, we present an alternative version of the detailed scratchpad formatting for subtraction.1309

Multiplication (×). We consider multiplication of positive numbers up to 2-digits. (i) Plain1310

formatting examples are formatted as A2A1 ∗ B2B1 = C4C3C2C1, while (ii) reverse formatting is1311

formatted as $A2A1 ∗ B2B1 = C1C2C3C4$. The (iv) detailed scratchpad method simplifies each1312

4We deviate from the strict definition of “most significant bit” (MSB) and “least significant bit” (LSB),
typically associated with binary numbers, and reinterpret them for the purpose of this paper as the most significant
“digit” and least significant “digit”, respectively.

42

intermediate step by conducting a series of multiplications between the first operand and each digit1313

of the second operand, starting from the least significant bit (LSB) and moving toward the most1314

significant bit (MSB). For each step, we multiply the result by an exponentiation of 10 corresponding1315

to the relative digit position.1316

Sine (sin). We consider decimal numbers within the range [−π/2, π/2], truncated to 4-digit1317

precision. (i) Plain formatting examples are formatted as sin(A0.A1A2A3A4) = B0.B1B2B3B4.1318

For (iv) detailed scratchpad method, we include the Taylor series expansion steps for sine, which1319

is represented as sin(x) = x − 1
3!x

3 + 1
5!x

5 − 1
7!x

7 + · · · . These intermediate steps involve1320

exponentiation, which may not be any easier to compute than the sine operation itself.1321

Square Root (√). We consider decimal numbers within [1, 10), truncated to 4-digits of precision1322

with the format, written as sqrt(A0.A1A2A3A4) = B0.B1B2B3B4 for (i) plain formatting. For (iv)1323

detailed scratchpad method, we enumerate each step of Newton’s method to compute the square root1324

function. The iterative formula is given by xn = 1
2 (xn−1 +

x
xn−1

), where x0 is initialized as the1325

floor of the square root value of the operand x. These intermediate steps involve a division operation,1326

which can be as complex as the square root operation itself.1327

For evaluation of sine and square root, we classify the result ŷi as correct if the absolute difference1328

between ŷi and the ground truth value yi is less than or equal to a predefined threshold ϵ ≥ 0.1329

19.2 Model1330

For all experiments, we use a Decoder-only Transformer architecture. Specifically, we primarily use1331

the NanoGPT model, a scaled-down variant of the GPT-2 model with half the number of self-attention1332

layers, heads, and embedding dimension. Note that we use character-level tokenization instead of1333

using the OpenAI’s BPE tokenizer (Tiktoken) of vocabulary size 50257, making the vocabulary1334

size significantly smaller. We use a learnable absolute positional embedding initialized randomly,1335

following the GPT-2 model. Are results are generated using a temperature of 0.8.1336

In the case of arithmetic tasks performed on plain and reverse formatting, we set a context length of1337

256 for NanoGPT experiments. The length of a single train example falls within the range of 13 to1338

15, approximately. However, when conducting experiments on scratchpad formatting, we increase1339

the context length to 1024. This adjustment allows us to accommodate more examples per batch. In1340

the case of simplified scratchpad, the length of each train example is approximately 64, while the1341

detailed scratchpad has a length of approximately 281. For GPT-2 experiments we fix the context1342

length to 1024 for all experiments. See Table 12 for details on model configuration.1343

For experiments on fine-tuning a pretrained large language model, we use OpenAI’s GPT-3 model -1344

Ada, Curie, and Davinci.1345

Figure 30: The GPT-2 Architecture. Image from (Radford & Narasimhan, 2018). NanoGPT model is a smaller
model with half the number of self-attention layers, multi-heads, and embedding dimensions.

43

Table 12: NanoGPT and GPT-2 model configuration

Model Input Formatting Context Length Self-Attn Layers Num Heads Embedding Dim

NanoGPT Plain, Reverse 256 6 6 384
Scratchpad 1024 6 6 384

GPT-2 Plain, Reverse 1024 12 12 768
Scratchpad 1024 12 12 768

19.3 Hyperparameter Configurations1346

In this section, we provide a detailed overview of the hyperparameter configuration used in our1347

experiments in Table 13 and 14. To enhance memory efficiency and training speed, we employ flash1348

attention. For most experiments, we utilize the bfloat16 data type. However, when working with1349

Nvidia 2080 GPUs, which do not support bfloat16, we switch to float16. It is worth noting that we1350

did not observe significant differences in training and evaluation performance between the two data1351

types.1352

For the GPT-2 experimentation, we reduced the batch size to 8 to accommodate the GPU memory1353

limitations. However, to mitigate the impact of the smaller batch size, we employed gradient accu-1354

mulation steps. This approach involves taking multiple steps between gradient updates, effectively1355

increasing the effective batch size to 64. For specific hyperparameter details, please refer to Table 14.1356

Table 13: Hyper Parameters used for NanoGPT experiments on arithmetic tasks

Input Format Batch Size Optimizer LR Betas Iterations Warmup Iter Wt decay Dropout

Plain, Reverse 256 AdamW 0.001 (0.9, 0.99) 5000 100 0.1 0.2
Scratchpad 16 AdamW 0.001 (0.9, 0.99) 50000 0 0.1 0.2

Table 14: Hyper Parameters used for GPT-2 experiments on arithmetic tasks

Input Format Batch Size Optimizer LR Betas Iterations Warmup Iter Wt decay Dropout

Plain, Reverse 64 AdamW 0.0005 (0.9, 0.99) 5000 100 0.1 0.2
Scratchpad 64 AdamW 0.0005 (0.9, 0.99) 20000 0 0.1 0.2

Table 15: Hyper Parameters used for tandem training experiments in Section ??.

Model Batch Size Optimizer LR Betas Iterations Warmup Iter Wt decay Dropout

NanoGPT 16 AdamW 0.001 (0.9, 0.99) 5000 0 0.1 0.2
GPT-2 40 AdamW 0.0006 (0.9, 0.95) 50000 2000 0.1 0.2

44

(a) NanoGPT, plain addition

0 10000 20000 30000 40000 50000
Iterations

0

20

40

60

80
Te

st
 A

cc
ur

ac
y

(%
)

(b) NanoGPT, detailed scratchpad addition

0 10000 20000 30000 40000 50000
Iterations

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

(c) NanoGPT, Perplexity

0 10000 20000 30000 40000 50000
Iterations

1.10

1.15

1.20

1.25

1.30

Pe
rp

le
xi

ty

(d) GPT-2, plain addition

0 10000 20000 30000 40000 50000
Iterations

0

20

40

60

80

Te
st

 A
cc

ur
ac

y
(%

)

(e) GPT-2, detailed scratchpad addition

0 10000 20000 30000 40000 50000
Iterations

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

(f) GPT-2, Perplexity

0 10000 20000 30000 40000 50000
Iterations

1.2

1.4

1.6

1.8

2.0

Pe
rp

le
xi

ty

Figure 31: Training loss curves for NanoGPT and GPT-2 trained with varying numbers of plain (Add) and
detailed scratchpad (DS) samples as well as the shakespeare dataset as described in Section ??. As we can see,
the model continues to improve in addition accuracy as the number of iterations increases. However, the training
perplexity on Shakespeare also tends to increase, which indicates some overfitting. However, we note that the
model still outputs “reasonable” text when prompted with shakespeare text.

20 Prompt Examples1357

In this section, we provide three examples of each formatting (plain, reverse, simplified scratchpad,1358

detailed scratchpad) of arithmetic operations (+,−,×, sin ,
√
).1359

20.1 Addition1360

45

Addition Examples

Plain
266+738= 1004
980+743= 1723
41+34= 75

Reverse
$913 +524= 1437$
$226 +598= 824$
$35 +58= 93$

Simplified Scratchpad
Input:
922+244
Target:
A->6 , C->0
A->6 , C->0
A->1 , C->1.
1166
Input:
285+43
Target:
A->8 , C->0
A->2 , C->1
A->3 , C->0.
328
Input:
993+849
Target:
A->2 , C->1
A->4 , C->1
A->8 , C->1.
1842

Detailed Scratchpad
Input:
396+262
Target:
<scratch>
[3,9,6] has 3 digits.
[2,6,2] has 3 digits.
[3,9,6] + [2,6,2] , A=[] , C=0 , 6+2+0=8 , A->8 , C->0
[3,9] + [2,6] , A=[8] , C=0 , 9+6+0=15 , A->5 , C->1
[3] + [2] , A=[5,8] , C=1 , 3+2+1=6 , A->6 , C->0
[] + [] , A=[6,5,8] C=0 , END
</scratch>
6 5 8
Input:
796+890
Target:
<scratch>
[7,9,6] has 3 digits.
[8,9,0] has 3 digits.
[7,9,6] + [8,9,0] , A=[] , C=0 , 6+0+0=6 , A->6 , C->0
[7,9] + [8,9] , A=[6] , C=0 , 9+9+0=18 , A->8 , C->1
[7] + [8] , A=[8,6] , C=1 , 7+8+1=16 , A->6 , C->1
[] + [] , A=[6,8,6] C=1 , END
</scratch>
1 6 8 6
Input:
788+989
Target:
<scratch>
[7,8,8] has 3 digits.
[9,8,9] has 3 digits.
[7,8,8] + [9,8,9] , A=[] , C=0 , 8+9+0=17 , A->7 , C->1
[7,8] + [9,8] , A=[7] , C=1 , 8+8+1=17 , A->7 , C->1
[7] + [9] , A=[7,7] , C=1 , 7+9+1=17 , A->7 , C->1
[] + [] , A=[7,7,7] C=1 , END
</scratch>
1 7 7 7

1361

46

20.2 Subtraction1362

Subtraction Examples

Plain
266 -738= -472
980 -743= 237
41-34= 7

Reverse
$913 -524= 983$
$226 -598= 273-$
$35 -58= 32-$

Simplified Scratchpad
Input:
396 -262
Target:
A->4 , C->0
A->3 , C->0
A->1 , C->0
100+34=134.
134
Input:
796 -890
Target:
A->6 , C->0
A->0 , C->0
A->-1 , C->-1
-100+6=-94.
-94
Input:
788 -989
Target:
A->9 , C->-1
A->9 , C->-1
A->-3 , C->-1
-300+99=-201.
-201

Detailed Scratchpad
Input:
396 -262
Target:
<scratch>
[3,9,6] has 3 digits.
[2,6,2] has 3 digits.
[3,9,6] - [2,6,2] , A=[] , C=0 , 6-2-0=4 , A->4 , C->0
[3,9] - [2,6] , A=[4] , C=0 , 9-6-0=3 , A->3 , C->0
[3] - [2] , A=[3,4] , C=0 , 3-2-0=1 , A->1 , C->0
[] - [] , A=[1,3,4]
100+34=134 , END
</scratch>
1 3 4
Input:
796 -890
Target:
<scratch>
[7,9,6] has 3 digits.
[8,9,0] has 3 digits.
[7,9,6] - [8,9,0] , A=[] , C=0 , 6-0-0=6 , A->6 , C->0
[7,9] - [8,9] , A=[6] , C=0 , 9-9-0=0 , A->0 , C->0
[7] - [8] , A=[0,6] , C=0 , 7-8-0=-1 , A->-1 , C->-1
[] - [] , A=[-1,0,6]
</scratch>
-9 4
Input:
788 -989
Target:
<scratch>
[7,8,8] has 3 digits.
[9,8,9] has 3 digits.
[7,8,8] - [9,8,9] , A=[] , C=0 , 8-9-0+10=9 , A->9 , C->-1
[7,8] - [9,8] , A=[9] , C=-1 , 8-8-1+10=9 , A->9 , C->-1
[7] - [9] , A=[9,9] , C=-1 , 7-9-1=-3 , A->-3 , C->-1
[] - [] , A=[-3,9,9]
-300+99=-201 , END
</scratch>
-2 0 1

1363

47

20.3 Multiplication1364

Multiplication Examples

Plain
5*32= 160
66*76= 5016
67*74= 4958

Reverse
$5*32= 061$
$66 *76= 6105$
$67 *74= 8594$

Detailed Scratchpad
Input:
22*52
Target:
<scratch>
[2,2] has 2 digits.
[5,2] has 2 digits.
[2,2] * 2 , A=[4,4] , k=1 , B=[4,4] , C=0+44=44
[2,2] * 5 , A=[1,1,0] , k=10 , B=[1,1,0,0] , C=44+1100=1144 , END
</scratch>
1 1 4 4
Input:
8*69
Target:
<scratch>
[8] has 1 digits.
[6,9] has 2 digits.
[8] * 9 , A=[7,2] , k=1 , B=[7,2] , C=0+72=72
[8] * 6 , A=[4,8] , k=10 , B=[4,8,0] , C=72+480=552 , END
</scratch>
5 5 2
Input:
52*34
Target:
<scratch>
[5,2] has 2 digits.
[3,4] has 2 digits.
[5,2] * 4 , A=[2,0,8] , k=1 , B=[2,0,8] , C=0+208=208
[5,2] * 3 , A=[1,5,6] , k=10 , B=[1,5,6,0] , C=208+1560=1768 , END
</scratch>
1 7 6 8

1365

20.4 Sine1366

Sine Examples

Plain
sin (1.0313)=0.8579
sin (-0.6909)=-0.6373
sin (-0.5719)=-0.5413

Detailed Scratchpad
Input:
sin (1.0313)
Target:
<scratch>
x_0=1.0313
x_1: x_0 - 1/3! * (xˆ3) , x_1=0.8484
x_2: x_1 + 1/5! * (xˆ5) , x_2=0.8581
x_3: x_2 - 1/7! * (xˆ7) , x_3=0.8578
x_4: x_3 + 1/9! * (xˆ9) , x_4=0.8578 , END
</scratch>
0.8578
Input:
sin (-0.6909)
Target:
<scratch>
x_0=-0.6909
x_1: x_0 - 1/3! * (xˆ3) , x_1=-0.636
x_2: x_1 + 1/5! * (xˆ5) , x_2=-0.6374
x_3: x_2 - 1/7! * (xˆ7) , x_3=-0.6374
x_4: x_3 + 1/9! * (xˆ9) , x_4=-0.6375 , END
</scratch>
-0.6375
Input:
sin (-0.5719)
Target:
<scratch>
x_0=-0.5719
x_1: x_0 - 1/3! * (xˆ3) , x_1=-0.5408
x_2: x_1 + 1/5! * (xˆ5) , x_2=-0.5414
x_3: x_2 - 1/7! * (xˆ7) , x_3=-0.5414
x_4: x_3 + 1/9! * (xˆ9) , x_4=-0.5415 , END
</scratch>
-0.5415

1367

48

20.5 Square Root1368

Square Root Examples

Plain
sqrt (7.2726)=2.6967
sqrt (3.6224)=1.9032
sqrt (1.0895)=1.0437

Detailed Scratchpad
Input:
sqrt (7.1042)
Target:
<scratch>
x_0=2
x_1: 1/2*(2+7.1042/2)=2.776, x_1=2.776
x_2: 1/2*(2.776+7.1042/2.776)=2.6675, x_2=2.6675
x_3: 1/2*(2.6675+7.1042/2.6675)=2.6653, x_3=2.6653
x_4: 1/2*(2.6653+7.1042/2.6653)=2.6653, x_4=2.6653 , END
</scratch>
2.6653
Input:
sqrt (6.2668)
Target:
<scratch>
x_0=2
x_1: 1/2*(2+6.2668/2)=2.5667, x_1=2.5667
x_2: 1/2*(2.5667+6.2668/2.5667)=2.5041, x_2=2.5041
x_3: 1/2*(2.5041+6.2668/2.5041)=2.5033, x_3=2.5033
x_4: 1/2*(2.5033+6.2668/2.5033)=2.5033, x_4=2.5033 , END
</scratch>
2.5033
Input:
sqrt (8.3216)
Target:
<scratch>
x_0=2
x_1: 1/2*(2+8.3216/2)=3.0804, x_1=3.0804
x_2: 1/2*(3.0804+8.3216/3.0804)=2.8909, x_2=2.8909
x_3: 1/2*(2.8909+8.3216/2.8909)=2.8847, x_3=2.8847
x_4: 1/2*(2.8847+8.3216/2.8847)=2.8847, x_4=2.8847 , END
</scratch>
2.8847

1369

20.6 Noisy Simple Scratchpad1370

We provide one example for each case of adding noise in the simplified scratchpad experiments1371

discussed in Section 18.4.1372

Noisy Simple Scratchpad Examples

We provide one example for each case of adding noise in the simplified
scratchpad experiments discussed in Section 18.4. The input prompt is
highlighted in light blue, while the remaining part is highlighted in light
green. We construct the dataset to have either correct or random digit-sum A
and carry information C. For all cases, the final answer remains accurate.

Prompt:
Input:
686+886
Target:

Correct A & C
A->2 , C->1
A->7 , C->1
A->5 , C->1.
1572

Random C
A->2 , C->0
A->7 , C->0
A->5 , C->1.
1572

Random A
A->0 , C->1
A->9 , C->1
A->9 , C->1.
1572

Random A & C
A->8 , C->1
A->1 , C->0
A->2 , C->1.
1572

1373

49

20.7 Example data for GPT-3 fine-tuning1374

We provide an example from the training dataset consisting of one prompt-completion pair used for1375

fine-tuning the GPT-3 model using OpenAI’s API. The prompt is highlighted in light grey, while1376

the completion is highlighted in light green. Note that for plain and reverse formatting, we include1377

spacing between digits to ensure consistent tokenization of numbers. “###” is used as the stop1378

sequence for generation.1379

20.7.1 Addition1380

Addition Examples

Plain
6 7 7 + 8 9 8 =1 5 7 5###

Reverse
7 4 9 + 7 8 5 = 4 3 5 1###

Simplified Scratchpad
Input:
32+981
Target:
A->3 , C->0
A->2 , C->1
A->0 , C->1.
1013###

Detailed Scratchpad
Input:
356+787
Target:
<scratch>
[3,5,6] has 3 digits.
[7,8,7] has 3 digits.
[3,5,6] + [7,8,7] , A=[] , C=0 , 6+7+0=13 , A->3 , C->1
[3,5] + [7,8] , A=[3] , C=1 , 5+8+1=14 , A->4 , C->1
[3] + [7] , A=[4,3] , C=1 , 3+7+1=11 , A->1 , C->1
[] + [] , A=[1,4,3] C=1 , END
</scratch>
1 1 4 3###

1381

20.7.2 Subtraction1382

Subtraction Examples

Plain
2 0 4 - 5 0 1 = - 2 9 7###

Reverse
7 3 4 - 9 6 7 = 3 3 2 -###

Simplified Scratchpad
Input:
695 -489
Target:
A->6 , C->-1
A->0 , C->0
A->2 , C->0
200+6=206.
206###

Detailed Scratchpad
Input:
848 -367
Target:
<scratch>
[8,4,8] has 3 digits.[3,6,7] has 3 digits.
[8,4,8] - [3,6,7] , A=[] , C=0 , 8-7-0=1 , A->1 , C->0
[8,4] - [3,6] , A=[1] , C=0 , 4-6-0+10=8 , A->8 , C->-1
[8] - [3] , A=[8,1] , C=-1 , 8-3-1=4 , A->4 , C->0
[] - [] , A=[4,8,1]
400+81=481 , END
</scratch>
4 8 1###

1383

50

20.7.3 Sine1384

Sine Examples

Plain
sin (-0.8649)
-0.7611###

Detailed Scratchpad
Input:
sin (-1.3516)
Target:
x_0=-1.3516
x_1: -1.3516 - 1/3! * (x*x*x) , x_1=-0.9401
x_2: -0.9401 + 1/5! * (x*x*x*x*x) , x_2=-0.9777
x_3: -0.9777 - 1/7! * (x*x*x*x*x*x*x) , x_3=-0.9761
x_4: -0.9761 + 1/9! * (x*x*x*x*x*x*x*x*x) , x_4=-0.9762 , END
</scratch>
-0.9762###

1385

20.7.4 Square Root1386

Square Root Examples

Plain
sqrt (1.2178)
1.1035###

Detailed Scratchpad
Input:
sqrt (5.5808)
Target:
<scratch>
x_0=2
x_1: 1/2*(2+5.5808/2)=2.3952, x_1=2.3952
x_2: 1/2*(2.3952+5.5808/2.3952)=2.3625, x_2=2.3625
x_3: 1/2*(2.3625+5.5808/2.3625)=2.3623, x_3=2.3623
x_4: 1/2*(2.3623+5.5808/2.3623)=2.3623, x_4=2.3623 , END
</scratch>
2.3623###

1387

1388

51

	Introduction
	Preliminaries and Experimental Setup
	Limitations
	Conclusion
	Appendix
	 Appendix
	Related Works
	Data Format Challenges and Arithmetic Emergence
	Matrix Completion: an Incomplete Tale of Emergence
	Training on Chain-of-Thought Data Expedites Emergence
	Longer Digits, Varied Operations, and Blending Arithmetic with Shakespeare
	Fine-tuning, Scaling, and Pretraining in Larger Models
	Extending to Longer Digit Addition
	Training from Random Initialization
	Fine-Tuning from Pretrained Models
	Impact of Formats on Fine-Tuning

	Teaching Arithmetic Operations Beyond Addition
	Extended Arithmetic Operations
	Jointly Training on All Five Arithmetic Tasks

	Mixing Text with Arithmetic Data
	Few-Shot Prompting
	Disentangling the effect of text on prompting
	Prompting with Text

	Fine-tuning, Scaling, and Pretraining in Larger Models
	Token Efficiency Across Data Formats
	Length Generalization
	Proofs
	Additional Experiments
	Zero-Padding and Symbol Wrapping
	Low-Rank Matrix Completion
	Generalizing to unseen digits

	The Importance of Intermediate Step Design
	The Effect of Noisy Inputs on Accuracy
	Analyzing the results on Sine/Sqrt

	Experimental Setup
	Dataset
	Data Balancing
	Data Formatting

	Model
	Hyperparameter Configurations

	Prompt Examples
	Addition
	Subtraction
	Multiplication
	Sine
	Square Root
	Noisy Simple Scratchpad
	Example data for GPT-3 fine-tuning
	Addition
	Subtraction
	Sine
	Square Root

