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Abstract

The nature of number is a classic question in the philosophy of mathematics. Cog-
nitive scientists have shown that numbers are mentally represented as magnitudes
organized as a mental number line (MNL). Here we ask whether CNN models, in
learning to classify images, also learn about number and numerosity ‘for free’. This
was the case. A representative model showed the distance, size, and ratio effects
that are the signatures of magnitude representations in humans. An MDS analysis
of their latent representations found a close resemblance to the MNL documented in
people. These findings challenge the developmental science proposal that numbers
are part of the ‘core knowledge’ that all human infants possess, and instead serve
as an existence proof of the learnability of numerical concepts.

1 Introduction

The past 10 years have seen great progress in computer vision models. Recent research is exploring
the alignment of these models to behavioral and brain imaging data on human cognition Cichy and
Kaiser [2019]. Here, we investigate the sensitivity of CNNs to number.

The nature of number is a classic question in the philosophy of mathematics dating back to Plato’s
dialogue Meno. The classic cognitive science finding is that numbers are represented in the mind as
magnitudes akin to the sensory representations of physical quantities Moyer and Landauer [1967].
These magnitude representations are in turn organized as a mental number line (MNL; Figure 1).

Figure 1: Mental number line representation in (left) human minds and (right) VGG19.

What is the origin of the MNL? A prominent position in developmental science is that magnitude
representations of number are part of the ‘core knowledge’ that all human infants possess Spelke
and Kinzler [2007]. An alternative hypothesis is that these representations are learned ‘for free’ as
intelligent systems learn to perceive and navigate their environment. Here, we evaluate this latter
hypothesis using CNNs. We propose that these models learn number representations as a ‘side effect’
of learning to classify images. We evaluate this proposal in experiments that constitute an existence
proof of the learnability of numerical concepts without the need to posit core knowledge of number.
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1.1 Cognitive science evidence that numbers have magnitude representations

That numbers have magnitude representations is supported by multiple experimental findings. We
focus on three important findings that have been documented using the number comparison paradigm.
In this paradigm, people see a pair of digits (e.g., 1 vs. 3) or numerosities (i.e., sets of objects like ‘o’
vs. ‘o o o’). The distance effect is the finding that the time to compare two numbers x and y decreases
as the distance |x− y| between them increases Moyer and Landauer [1967]. This is consistent with
the following process model: fixate x and y on the MNL and discriminate which one is ‘to the right’.
The farther apart the two numbers, the easier the discrimination.

The size effect is the finding that the time to compare two numbers x and y increases as their average
size (x− y)/2 increases Parkman [1971]. This suggests that the scaling (i.e., the distance between
adjacent numbers) of the MNL is not fixed, as in the conventional number line of mathematics, but
rather is psychophysically compressed, as it is for perceptual quantities; see Figure 1. Thus, for
example, people are faster to discriminate which of 1 vs. 3 is ’to the right’ than 7 vs. 9.

The ratio effect combines the distance and size effects: it is the finding that the time to compare two
numbers x and y decreases as the ratio of the greater number over the smaller number increases,
and this decrease is according to a nonlinear psychophysical function Halberda et al. [2008]. The
presence of this effect is considered very strong evidence for magnitude representations of number.

1.2 Numerical sensitivities of computer vision models

Recent research has explored the mathematical capabilities of ML models. Much of this work has
focused on the ability of NLP mdels to solve arithmetic, algebra, trigonometric, and calculus problems
Welleck et al. [2022] and also to generate proofs in higher-level mathematics (i.e., discrete math,
probability, linear algebra, abstract algebra, real analysis, topology) Davies et al. [2021].

Less attention has been paid to the mathematical capabilities of computer vision models. This is
perhaps because they are a poor fit for symbolic mathematics. Early research explored pre-CNN
models trained on artificially generated numerosity stimuli Stoianov and Zorzi [2012] Zorzi and
Testolin [2018] found that such models showed the ratio effect; further analysis of the hidden layers
found units tuned to specific numerosities. Subsequent work generalized these findings to networks
trained on numerosity images abstracted from naturally occurring images Testolin et al. [2020].

Other researchers have evaluated the number representations of CNN models trained on ImageNet
Kim et al. [2021] Nasr et al. [2019]. They have found hidden layer units tuned to specific numerosities.
When these representations are used as inputs to a separate network trained to decide whether two
images are of the same numeoristy or not, that network shows the distance and size effects.

With respect to the MNL, it has recently been shown that a vision transformer model trained on
artificially generated numerosity stimuli learns a latent MNL representation Boccato et al. [2021].

1.3 Research Questions

We investigate whether CNNs learn magnitude representations of number. We present numerosities
to the models in a sequence of experiments differing in which incidental visual features are controlled
and which are allowed to vary freely (and potentially correlate with number):

1. The items of the two numerosities are circles. The total area of the numerosities is equated
to rule out this visual feature as the basis of comparison.

2. Like (1) but the total circumference is equated to rule out this visual feature.
3. Like (2) but the items of the two numerosities are different (e.g., two of the three of circles,

squares, triangles) to generalize the findings across shapes.
4. Like (3) but the total area of each numerosity is different to generalize the findings across

both shapes and area.
5. Like (4) but the items of each numerosity are random shapes of random area to further

generalize the findings.
6. Naturally occurring numerosities found through Google Images that differ on many visual

attributes (e.g., shape, size, drawing style, color, etc.) to ensure further generalization.

We evaluate whether the models show the signatures of magnitude representations: the distance, size,
and ratio effects. We also explore whether the models learn a latent representation of the MNL.
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2 Methods

2.1 Models

We used the pre-trained VGG19 Simonyan and Zisserman [2015] model from the PyTorch model zoo
as our primary model. We evaluated the generalizability of our findings by replicating all analyses
with the pre-trained Alexnet, Googlenet, Densenet, and Resnet18 models.

2.2 Numerosity stimuli

The stimuli for the six experiments are as described in the six research questions above; see Figure 2
for examples. They spanned numerosities from 1 to 9.

Figure 2: For the 6 experiments, sample stimuli for 3 numerosities.

For the Experiments 1-5, the stimuli were solid black shapes randomly placed on a white background
of 720 × 720 pixels generated using matplotlib. For Experiment 1, the items were circles and the
total area of each comparison was equated. Specifically, for each of 5 total areas, we generated 4
stimuli for each of the numerosities 1-9. The total area of a stimulus varied from A1 = .02% to
A5 = .10% of all pixels in increments of .02%. For Experiment 2, the total circumference of a
comparison was equated. The stimuli were generated similarly to Experiment 1 except that the total
circumference of a stimulus was varied from C1 = 100 to C5 = 300 pixels in increments of 50
pixels. Experiment 3 was like Experiment 1 except the items of the two stimuli were different, e.g.,
one might be circles and the other either squares or triangles. Experiment 4 was like Experiment 3
except the total areas of the two stimuli varied randomly. Experiment 5 was like Experiment 4 except
that the items of each stimulus varied randomly both in shape and in area. For Experiment 6, we
automatically collected 80-100 images from Google Images for each numerosity 1-9. We stripped
the background and manually verified each image. We retained a subset of 40 images per numerosity
that clearly showed the target quantity.

2.3 Generating Model predictions

For each experiment, we normalized and resized each stimulus image. For two unequal numerosities
each in the range 1− 9, there are (9× 8)/2 = 36 possible comparisons. Denote the numerosities
of a comparison as n1 and n2. We randomly selected stimuli of numerosity n1 and n2, presented
each to the CNN, captured their respective vector representations on the final fully connected layer,
and computed the cosine similarity of the two vectors. We repeated this process M = 20 times for
the first three experiments, M = 40 times for Experiment 4, and M = 60 times for Experiments 5
and 6, increasing M with increasing noise in the stimulus. Finally, we computed the average cosine
similarity when comparing n1 and n2.

We used these values to estimate the three effects. For the distance effect, we plotted the average
cosine similarity (y) at each distance |n1− n2| (x) and computed the correlation between these two
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variables. A distance effect is signalled by a negative correlation close to r = −1. We repeated this
process for the size effect, with the x variable the size |n1 − n2|/2 of the comparison; here, the
expectation was for a positive correlation close to r = 1. We also repeated this process for the ratio
effect, with the x variable the ratio max(n1, n2)/min(n1, n2) of the comparison. Here, we fit a
negative exponential function to model the results; the expectation was for an R2 value close to 1.

3 Results

Figure 3: For the 6 experiments, the distance, size, and ratio effects.

Figure 4 presents graphs for all VGG19 experiments showing the distance, size, and ratio effects. The
panels correspond to the sample stimuli displayed in Figure 2.

As the graphs show, VGG19 generally displayed the distance, size, and ratio effects across all
experiments. Two patterns are worth noting. First, the model’s account of the size effect is weaker
than its account of the other two effects. This is particularly true of Experiments 2 and 4. That said, it
is the distance effect that is the key finding for a MNL, and the ratio effect subsumes both the distance
and size effects. Second, the model’s distance and ratio effects are weakest for Experiment 6. These
stimuli were images returned from a Google Image search, and they naturally varied on many more
incidental visual features than the stimuli of the other experiments. The reduced fits may signal the
limits of the model’s representation of numerosity.

Finally, we estimated the latent MNL representation of VGG19 by organizing the pairwise average
cosine similarities of the numerosities 1− 9 in Experiment 1 in a matrix, submitting this to MDS,
and requesting a 1D solution; see Figure 1. The Stress-I value was 0.008, indicating that a continuum
offers a good of these similarities. The representation resembles that of the psychophysically
compressed MNL, with the major distortion being the displacement of ’2’.

4 Discussion

The current study investigated whether CNN models, in learning to classify images, learn about
number and numerosity ‘for free’. This was the case: VGG19 showed the distance, size, and ratio
effects that are the signature of the magnitude representations in humans. This was true across five
experiments using artificially generated stimuli and a sixth using naturally occurring numerosities
found via Google Images. In addition, an MDS analysis of the latent representation of the Experiment
1 stimuli found a close resemblance to the psychophysically scaled MNL documented in people.

That CNNs trained on ImageNet learn magnitude representations of number is at odds with the
core knowledge proposal, which states that the MNL is part of biological endowment of the child
Spelke and Kinzler [2007]. This finding is more consistent with the emergentist perspective, which
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claims that this representation arises from the interplay between neural architecture constraints,
domain-general learning mechanisms, and structured environments Zorzi and Testolin [2018].

In ongoing work, we are identifying the earliest layer of CNNs where magnitude representations first
manifest as evidenced by distance, size, and ratio effects and by a latent MNL. We are also exploring
the numerical sensitivities of state-of the art vision transformer models Boccato et al. [2021].

The current research sets the stage for investigations of the development of magnitude representations.
The developmental progressions of the distance, size, and ratio effects have been documented in
children Halberda et al. [2008] Sekuler and Mierkiewicz [1977]. An interesting question is whether
computer vision models show the same progressions in their number representations over training.
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