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Abstract

Mathematics is one of the most powerful conceptual systems developed and used by
the human species. Dreams of automated mathematicians have a storied history in
artificial intelligence (AI). Rapid progress in AI, particularly propelled by advances
in large language models (LLMs), has sparked renewed, widespread interest in
building such systems. In this work, we reflect on these goals from a cognitive
science perspective. We call attention to several classical and ongoing research
directions from cognitive science, which we believe are valuable for AI practitioners
to consider when seeking to build truly human (or superhuman)-level mathematical
systems. We close with open discussions and questions that we believe necessitate
a multi-disciplinary perspective—cognitive scientists working in tandem with
AI researchers and mathematicians—as we move toward better mathematical AI
systems which not only help us push the frontier of the mathematics, but also offer
glimpses into how we as humans are even capable of such great cognitive feats.

1 Introduction

Building computational systems that understand and practice mathematics at the level of human
mathematicians has been a long-standing aspiration of artificial intelligence (AI) [1–15]. The rise of
large language models (LLMs) has sparked imaginations that we are closer than ever to attaining, or
surpassing, human-level performance on a range of tasks [16–18]. Yet, simultaneously, something
seems amiss: despite these models achieving tremendous performance in many realms of human
expertise (e.g., medicine, law, creative writing), the performance of these models on mathematics
specifically lags behind [19–22]. There are many efforts to improve the mathematical problem-
solving capabilities of LLMs, such as adjusting the training data and feedback strategies [23–27],
equipping models with expanded background knowledge at inference-time [28], or composing LLMs
with existing computational mathematics systems [29–33]. Recent efforts to build in principles from
cognitive science, e.g., the importance of learning abstractions, have also seen success [34, 35];
however, we believe that the broader AI-mathematics community still has much to draw from
cognitive science: in the questions we ask and the methods by which we approach such challenges.

First, we believe it is essential to reflect on what goals we are even trying to pursue. What does it
mean for AI systems to excel at mathematics at or beyond a human level? Is simply excelling at
a suite of standard benchmark datasets sufficient? While there is no doubt value in benchmarks to
spur progress, humans—and human mathematicians—are capable of so much more than what can
be captured in a static benchmark. We are capable of intuitions and judgments [36], of reasoning
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about the world as world [37], of seeking deeper explanations and understandings of results [38], of
flexibly developing new problem solving tactics and not just solving new problems, but posing them
too [39, 40]. How then should we proceed to develop human-level AI mathematicians? In the rest of
this position paper, we argue that perspectives from cognitive science have a lot to offer in this new
age of LLMs. Cognitive scientists, AI researchers, and mathematicians can productively contribute
together to this vision towards growing flexible, automated mathematicians that help us push the
frontiers of mathematical knowledge and reflect back on how we are even capable of remarkable
achievements of mathematical cognition [41].

2 Looking to cognitive science

We now call attention to several classical and active research directions within cognitive science
which we believe hold value for those building mathematical AI systems.

2.1 Sample-efficient learning

One of the hallmarks of human cognition is our ability to learn new concepts, knowledge, and
problem-solving strategies, from little data [42–47]. In mathematics, data paucity is a particular
conundrum, e.g., it is costly and difficult to obtain high-quality data on advanced topics, and few
texts may exist on the cutting-edge or more obscure branches of mathematics. On the other hand,
human mathematicians, from early learners to expert-level mathematicians, do not need millions of
examples to learn mathematical concepts and problem-solving strategies. Yet, even though the rote
number of examples developing mathematicians may be exposed to is small, that does not mean that
a concept is grasped immediately upon exposure. It make take a human multiple encounters with an
example, extended time sitting and thinking—squeezing out a tremendous amount from a handful of
examples, e.g., through active engagement like self-explanation (see below)—to master a concept or
strategy, after which such knowledge can be readily generalized to new situations [44, 48–51].

2.2 Concepts, representations, and world models

It is inspiring to reflect on the sample-efficiency of human learning. If we are to obtain or surpass
such capabilities in AI systems, it is important to examine how humans may achieve such efficiency
in the first place. Towards this end, we point to the rich cognitive science literature on concepts, their
representations, and how the human mind builds rich models of the world out of concepts [52–55].

In cognitive science, much research in cognitive science points to powerful inductive biases gleaned
through evolution: “core knowledge” [56, 57]. It has been speculated that a core “number sense” [58]
forms the foundation upon which our mathematical prowess is built. Strong evidence points to
two core number systems—for reasoning about numerosity exactly, and approximately [49, 58, 59].
From these core knowledge systems, we can develop concepts [42, 54, 60]. Notably in mathematics,
concepts have precise definitions, unlike other abstract concepts such as justice and knowledge or
everyday concepts like chair. At the same time, mathematicians think about concepts more than in
terms of definitions; they can give examples and counterexamples, draw out relationships between
concepts, and so on—this type of conceptual richness is compatible with the psychological theory of
conceptual-role semantics [52].

So, what are the form(s) of these conceptual representations? Contemporary cognitive science has
provided strong evidence for that conceptual representations may be modeled by “languages of
thought” [61–64], which in mathematics, may be built over core geometric primitives [65]. Closely
linked with “languages of thought” is the notion of a “world model”. In AI, many have highlighted
the importance of world models, although researchers disagree about how to build such models
within AI systems [66–68, 64]. It is generally accepted that a world model should support simulation
of possibilities, causal and counterfactual reasoning, and calibrated judgements about belief and
truth [43, 67–74]. We hypothesize that the intuitions that mathematicians acquire over years of
practice can be seen as forming world models of the mathematical universe. Here, we use the famous
“P = NP?” problem as an illustrative example. Most people believe that P ̸= NP. It seems that
much evidence of such strong beliefs over an unproven statement comes from simulating what would
happen if P = NP or P ̸= NP. If the former is true, many counter-intuitive consequence would
follow, whereas we would not need to heavily adjust our other beliefs about computation if the latter
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is true [75–77]. This kind of simulation and argumentation, we suggest, may be powered by world
models.

2.3 Goals, planning, and agency

Today, the dominant paradigm for large language models is a passive one: a (very large) training
corpus is provided to the model, and the model optimizes some given objective function [78, 16]. At
inference-time, a model is presented with a problem (e.g., a translation or reasoning task) and tries to
make good predictions. However, this is not how humans think about or perform problem-solving.
Humans are planning agents with goals spanning across different communities and timescales [79, 80].
When planning to achieve a goal, we can flexibly divide a task into sub-goals, form and leverage
simplified abstract representations to inform planning, and replan [81–85]. Planning is crucial to
success in mathematical reasoning. Consider when a teacher gives a student a problem to solve;
the student needs to generate sub-goals and come up with strategies, such as looking up definitions,
consider examples, examine different cases, or simply look for help. Moreover, mathematical
cognition is not just about planning for set goals, but inventing new goals, problems, and concepts
[39–41, 51]. How do some mathematicians form the goal of inventing new mathematics, and how
do they achieve it? Engineering and scientific insights on these questions—drawing on cognitive
science, AI, and mathematics—may drive a huge leap forward towards creative AI mathematicians.

2.4 Cognitive limitations and resource-rationality

However, humans are far imperfect planners, and they may fail to execute the plans we do embark
upon. Mathematicians may become wedded to a particular proof strategy only to realize it was
misguided and need to backtrack, or worse, could fall prey to functional fixedness [86, 87] and
the sunk cost fallacy [88]. Such instances put a damper in the notion that humans are rational
reasoners [89]. Cognitive scientists here too have developed rich frameworks to reconcile such
challenges. Rather, we may be viewed as rational in light of resource constraints, i.e., “resource-
rational” [90–93]. This notion finds particular importance when thinking about humans and AI
systems. Fundamentally, humans and computational systems have different resource limitations:
computers are able to make calculations extremely fast, are not constrained to the same limitations
on working memory, and do not succumb to daily inevitable fatigue that we humans do. When
building mathematical AI systems then, it is prudent to question whether we should be designing
AI systems to mimic human resource constraints [92]. If trying to build a computational “thought
partner” to complement humans and enable us to explore greater mathematical depths than we have
so far, for instance, by making more calculations and proposing possible new patterns in troves
of data [15], then perhaps we do not want to curtail a model’s resources. However, one could
argue that perhaps, such resource limitations are not a failing, but rather an advantage: for instance,
empowering us to judiciously select which problems to solve in the first place. Indeed, mathematics
communities (generally) do not waste too much time on problems that people believe to be out of
reach. Studying under what settings resource limitations on mathematical cognition are advantageous,
and when they are not, is a ripe space for collaboration across cognitive science, mathematics, and AI,
particularly when thinking about making sensible use of limited resources even present in large-scale
AI systems [94, 95].

2.5 Communication and explanation

We close our tour of cognitive science insights to spark the imaginations of those seeking to build
mathematical AI by reiterating that mathematics is a group activity consisting of communities, and
development of knowledge in any intellectual community depends on effective communication. We
argue that a cognitive perspective on communication is valuable for the math-AI community for two
core reasons. First, the output of our communication amongst each other forms the bedrock of the
data used to train LLMs. Second, insights from cognitive science reveal that communication can spur
learning for the communicator [96]. We start by reflecting on the latter.

Ample evidence in cognitive science reveals the power of self-explanation for improving learning and
generalization [96–102]. Explanations can help the explainer identify abstractions to inform induc-
tion [96, 99] and reveal gaps in one’s own knowledge [97], motivating information-seeking to resolve
such gaps [100]. At first glance, recent LLM research such as chain-of-thought-prompting [103],
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“self-taught reasoning” [104], “self-reflection” [105] could be viewed as self-explanation to improve
reasoning, but we encourage ruminating on the cognitive underpinnings. In fact, we argue that
these are not instances of self-explanation in the way that humans self-explain. For humans, self-
explanation is something that we want to do, because understanding is intrinsically valuable [99, 106].
Thus, it is desirable to not just have new prompting strategies leveraging explanations, but systems
designed with explanations at their core.

And what about communication to others? We externalize many of our inner thoughts, whether that
be writing out the steps of a new proof, drawing diagrams to convey a concept, or debating with a
friend what the largest possible number is. These externalized thoughts and interactions increasingly
form the bedrock of training data for AI systems. Nonetheless, humans do not communicate all of
our inner thoughts; rather, we communicate what we believe is essential to convey [107]—often
requiring the listener to make inferences about what the communicator intends to communicate
(which may differ from what they actually produced) [108–110]. Such communication frameworks
may be important for building mathematical AI systems that can adequately “read between the lines”
in the data available and recognize that when providing mathematical assistance to humans, humans
are capable of such inferences (e.g., we do not always require overly verbose responses and in fact
may find it less helpful in mathematics [19]).

3 Concluding remarks

Catalyzing community cross-talk As we highlight, the cognitive science community has been
studying topics deeply relevant to mathematical AI. We hope our piece helps further expose AI
practitioners and mathematicians to what we believe are valuable terminology and conceptual
structures from cognitive science. Cognitive scientists too can sharpen our theories from further
exchanges across communities; we lay out a few strategies to facilitate such conversations. First,
accessibility of higher-level mathematics is perhaps one of the most pernicious barriers to effective
collaboration across cognitive scientists and AI practitioners in the space. Convenings designed to
engage not just the AI and mathematics community but also cognitive scientists would aid in building
a shared vocabulary across these communities. Second, there is a need for improved research tools
to empower the study of mathematics across our communities. For more than a decade, cognitive
scientists and AI practitioners alike have benefited enormously from crowdsourcing platforms such
as Amazon Mechanical Turk [111] and Prolific [112]. However, at present, it is hard to find targeted
domain practitioners on such sites. We suggest that it would be extremely valuable for the community
to discuss the idea of a “Mechanical Turk for mathematics”; i.e., a platform where AI and cognitive
scientists can post studies, questions, data gathering attempts about mathematics and mathematicians
and students can participate in them. Ideally, such an effort could benefit all parties involved. Third,
we note that a strong catalyst for collaboration can be a shared goal [113]. We point to games as a
sensible playground which may appeal to mathematicians, cognitive scientists, and AI practitioners.
Games have been ripe grounds for study in both AI [114–116] and cognitive science [81, 117–119],
and as recently exposed by Poesia [120], aspects of mathematics itself may be cast in the language of
games. We see this as a particularly exciting framing that allows us to better understand many aspects
of mathematics with the help of mathematicians.

Looking forward With the resurgence in interest around AI and mathematics, we emphasize
the value of engaging with the cognitive science community in the quest towards more powerful
automated mathematicians. Engaging across the mathematics, cognitive science, and AI communities
is paramount in even defining what this quest is and where we intend to go. To close, we propose
several directions of inquiry that we think the nexus of the cognitive science, AI, and mathematics
communities are poised to address. For instance, advances in AI can serve as tools to help us better
understand the relationship between mathematical problem-solving capabilities and the modalities
of mathematical data—language (natural and formal) alongside figures and diagrams; what makes
a problem easy or hard (and how this differs across humans and AI systems); what kinds of prior
knowledge, including human commonsense knowledge, is necessary to learn mathematics; and
what are the computational foundations of mathematical insights. We believe that steps along these
directions, taken across our communities, can not only spur the development of truly powerful AI
mathematicians, but also shed light on what is so special about humans’ feats of mathematical
cognition—sparking efforts to improved tailored mathematical education and push the boundaries of
what we, jointly with AI systems, understand about the wonderful world of mathematics.
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