SIRD: Symbolic Integration Rules Dataset

Vaibhav Sharma* Abhinav Nagpal *f
sharmavaibhav1729@gmail . com abhinav.nagpall@aexp.com
Muhammed Fatih Balin®

balin@gatech.edu

Abstract

Advancements in neural networks and computer hardware lead to new use cases
for deep learning in the natural sciences every day. Even though symbolic mathe-
matics tasks have been explored, symbolic integration only has a few studies using
black box models and currently lacks explainability. Symbolic integration is a
challenging search problem and the final result is obtained by applying different
integration rules at each step. We propose a novel and interpretable approach to
perform symbolic integration using deep learning through integral rule prediction
to speed up the search. We introduce the first-of-its-kind symbolic integration rules
dataset comprising two million distinct functions and integration rule pairs. For
complex rules such as u-substitution and integration by parts, it also includes the
expression needed for rule application. We also train a transformer model on our
proposed dataset and incorporate it into SymPy’s integral_steps function to get
guided_integral_steps, resulting in 6 x fewer branches explored by allowing our
model to guide the depth-first-search procedure.

1 Introduction

We utilize symbolic mathematics and computer algebra systems to help us solve mathematical
problems. By working with operators, symbols, and sequences, computers can tackle everything
from simple equations to complex calculus, including differentiation, differential equations, and
integration. The use of computers for mathematics has become essential in fields such as computer
science, telecommunications systems, engineering, medicine, and many more. Humans possess
impressive abilities for abstract mathematical and logical thinking. Our understanding and ability
to solve mathematical problems not only rely on inference, utilizing laws, axioms, and symbol
manipulation rules but also on our experience.

For many years, scientists have aimed to create machines that learn and reason independently.
Previous studies (Huang et al., [2023; [Piotrowski et al.,|2019; Zaremba et al., [2014; [Loos et al., [2017)
have explored the potential of deep learning for mathematical reasoning. They focus on using deep
learning for arithmetic tasks such as integer addition and multiplication (Kaiser & Sutskever, 2015}
Zaremba et al.||2014)), solving word problems (Huang et al.| 2023 Wang et al.| 2018 |Chatterjee et al.|
2022)), and performing calculus (Lample & Charton| |2020; |Panju & Ghodsi, [2020). However. the
current attempts remain far from exceeding the performance of a human expert.

Recently, with the release of large language models (LLMs), testing their math-solving capability
became evident in the community (Ji & Gaol 2023} [Tang et al., [2023; [Frieder et al., 2023)). Primarily,

*Equal contribution

T American Express, Al Labs

#School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
§Corrosponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Workshop on MATH-AL

they investigate mathematical problems expressed in natural language involving numbers. On the
other hand, calculus is free of words and is expressed via a combination of various symbols and
expressions. These problems are either not explored enough or explored in a more end-to-end
black-box fashion (Lample & Charton, [2020; [Noorbakhsh et al., 2021). There are some previous
works (Rich et al.; Meurer et al.,[2017)) that have also attempted to create parsing rules for different
mathematical functions and to apply calculus rules to solve the problems in heuristic ways. Calculus
problems can be formulated as search problems, where the final solution is multiple mathematical
steps away.

With all the above considerations, we introduce the first-of-its-kind Symbolic Integration Rules
Dataset (SIRD-2M), comprising 2 million function-integration rule pairs to attack the interpretable
symbolic integration problem. The dataset includes examples of what integration rule needs to be
applied at each step of integration for different functions. Moreover, it also includes an expression
along with the integration rules, for the more complicated u-substitution and integration by-parts
rules. We automate human-like step-by-step integration using integral rules predicted by a model
trained on the SIRD dataset. This process is more efficient and interpretable compared to the existing
studies that tend to predict the integral expression directly. SIRD can be employed to train a highly
generalizable model, as demonstrated by our strong benchmarks. Our goal is to encourage more
research in symbolic integration and other symbolic math problems. We think that general computer
algebra systems can be made much more capable by utilizing an approach similar to ours.

To summarise, the major contributions of our work are as follows:

¢ Introduce SIRD—ZMEI a large-scale dataset comprising 2 million functions corresponding to
24 integration rules with additional expressions for certain integration rules.

* Benchmark three integration-related tasks - Complete Rule Prediction, Rule Prediction, and
Integral Prediction.

* Modify integral_steps method of SymPy (Meurer et al., 2017), a symbolic maths package,
and propose guided_integral_steps by looking at the outputs of a transformer model trained
on SIRD at each integration step and dynamically guiding the depth-first-search procedure.
We show that 6 x fewer branches are explored compared to integral_steps, whose search
procedure depends on predefined static heuristics.

2 Symbolic Integration Rules Dataset (SIRD)

SIRD-2M consists of 2 million functions and the corresponding integration rules. The dataset includes
samples for 24 different integration rules (see Appendix [E), including the u-substitution and the
integration by parts which require a function expression when applied. For such cases, we also
provide the expression to be used along with the rule.

2.1 Data Source

The recent work by Lample & Charton| (2020) introduced three datasets for symbolic integration -
Forward (FWD), Backward (BWD), and Integration by Parts (IBP). These datasets comprise function-
integral pairs and are produced using three different methods (see Appendix [A]for more information).
For our study, we used functions from the FWD dataset to generate samples for SIRD. To this end,
we modified the SymPy library’s integral_steps function to produce the function and integration rule
pairs during each step of integration. It is worth noting that integrals of the functions from FWD
were originally generated using SymPy’s integrate function. See Appendix [B]for more details on the
mentioned SymPy functions and modified integral_steps to generate SIRD samples.

2.2 Data Generation, Validation & Processing

Data generation: As mentioned above, the FWD dataset consists of pairs of functions and corre-
sponding integrals. When solving an integration problem, a human typically follows a step-by-step
process. Given a function, a human contemplates which rule to apply to the function, applies it
to obtain an expression, and repeats the process until it arrives at the final integral. We created

>Publicly available at https: //github.com/mfbalin/SIRD-Symbolic-Integration-Rules-Dataset|

https://github.com/mfbalin/SIRD-Symbolic-Integration-Rules-Dataset

Table 1: SIRD examples.

. Transformation Model Input Model Output
Function Rule .
Expression Sequence Sequence
2 ’ [add, pow, z, INT+, 2,
x* + 2x add_rule mul, INT+, 2, 2] [add_rule]
1 9 e 1 [mul, pow, add, INT+, 1, pow, T
exp(tan~'(z))/(1 4 *) | substitution_rule | exp(tan™'(z)) 2, INT+, 2, INT., 1, exp, atan, 2] [substitution_rule, exp, atan, x]

Input : /(nv2 + 2z) dz Input : /(et""il(’)/(l +2%)de Input: /(et‘mil(”)/(l +22)) da
' o
i Rule : Add Rul l Rule : Subts:ﬁ}z(iz)on Rule Rule : Substiltution Rule
Exp: e Exp: etan (@)
Input : /zz dx Input : /2z dz ¢
I 1 +
Rule : PowerRule Rule : Constant Times Rule Input : /] du Input : /eu i
Input : z°/3 Input : / zdz Rule : Constant Rule Rule : Ezponential Rule
Rule : Power Rule l l
¢ U
Input : /2 Input: u Input : e
exp(tan1(z))
(@) 2% + 2z () — it22

Figure 1: A tree showing the rules chosen by the model while performing a search.

the samples for SIRD by extracting all pairs of expression and integration rules that appear in the
intermediate steps of this process. For this purpose, we used the integral_steps function available
in SymPy, which can provide all the intermediate steps associated with various rules applied to the
subproblems of the function to obtain its integral. However, the syntax of the output generated by
integral_steps is not straightforward and is not directly usable for our purposes. That is why, to
obtain the exact expression-integration rule pairs for SIRD, we modified the individual integration
rule functions from SymPy and the flow of the integral_steps function, creating a data generation
script. As a result, one sample from the FWD dataset contributed multiple samples in SIRD - one for
each step towards solving the integral of a function, after which we removed the duplicate entries.
Appendix [B.2] provides examples and a detailed explanation of the output syntax and step-by-step
data generation, and Appendix [C|details how we ensured correctness.

Data processing: After generating the function and the corresponding rules, each subproblem-rule
pair is separated, forming a sample for SIRD. There are two types of rules in the dataset: a) rules that
come with an accompanying expression, requiring an additional expression to be applied (such as
u-substitution), and b) simple rules like add rule, multiplication rule, etc. For a single SIRD sample,
the expression is the input sequence to the model, and the integration rule along with possibly the
additional expression is the output sequence. Similar toLample & Charton| (2020), we transform
the input expressions and expressions accompanying rule name in certain output sequences to prefix
(polish) tree notation to train our model, see Table E] for details.

3 Experiments

We trained a sequence-to-sequence model that predicts the name of the next rule to be applied along
with an expression if applicable. We used the transformer model from [Vaswani et al.| (2017); Lample
& Charton| (2020), as it has been empirically tested to perform relatively well for the symbolic
integration task so we kept the same configuration, see Appendix [D]for details. We have only used
input expressions with less than 384 tokens in prefix form (see Appendix [F) to train our model on 1.6
million samples (80% of SIRD). We compare the predicted value and true label for various tasks, so
our evaluation metric is accuracy. We define the following tasks and their evaluation criteria:

* Complete Rule Prediction: Evaluating if both the predicted rule and the expression (if
applicable) are the same as ground truth to consider a prediction correct.

Table 2: Results for different tasks.

Task Dataset Nél;lr::lgsf Approach (?r (:::llltlll(::?tly Accuracy (%)
Complete Rule Prediction | SIRD-2M 210976 Our model - 81.35
210976 - 82.87
82832 Add Rule 99.99
. 43190 Multiplication Rule 97.99
Rule Prediction SIRD-2M 16759 Our model Subsl:itu tion Rule 57.40
9262 Parts Rule 66.76
58933 Other Rules 57.47
integral_steps - 95.47
Integral Prediction FWD 7000 guided_integral_steps - 95.93
Lample & Charton|(2020) — 97.38

* Rule Prediction: Evaluating if only the predicted rule is the same as the ground truth to
consider a prediction correct.

¢ Integral Prediction: For this task we created guided_integral_steps by incorporating our
model into the integral_steps function of SymPy. So instead of searching heuristically,
integral_steps makes inference calls to our model at every intermediary step and explores
different rules in an order based on our model’s predictions. For correctness, we differentiate
the final result and compare it with the original function.

Test set for different tasks: We divide SIRD into 80% for training, 10% for validation and 10% for
testing. We benchmark our model’s performance and generalizability using different test sets for
different tasks. For Complete Rule Prediction and Rule Prediction tasks, we used the 10% test set of
SIRD. We also measure the accuracy of individual rules on the same test set. Note that for the rule
prediction tasks, there may be multiple correct rules to apply at any point, and our dataset includes
only one correct rule as the label. For Integral Prediction, we used the test set of the FWD dataset
for evaluation. However, we need to mention that the current version of SIRD does not support
functions having Hyperbolic Trigonometric Functions (e.g. sinkh(x) and cosh(x)) as the integral_steps
function is not capable handling these types of functions. Therefore, we removed these functions
from the test set of the FWD dataset before evaluation.

In the implementation of integral_steps, the SymPy function corresponding to each integration rule is
called sequentially in a defined order. At each intermediary step, the applicability of the integration
rule is checked before advancing to the next one until the integral of the function is found. In essence,
it performs a depth-first search through all the defined rules at each intermediate step when integrating
a given function. In the guided_integral_steps, we modified and removed the predefined order of
integration rules. Instead, we run an inference through our model with the current expression as input,
which outputs probability scores for each integration rule, based on which they are ranked. This way,
the order of integration rules explored during depth-first-search becomes dynamic as it depends on
the current expression.

4 Results and observations

4.1 Accuracy Comparison

Table 2] shows that guided_integral_steps outperforms the original integral_steps function, i.e. the
dataset generator itself on the test set from the FWD dataset. This shows the generalizability of our
approach over the dataset generator itself, which we discuss in Section It should be noted that the
integrate function from SymPy was used to generate the FWD dataset, and it can integrate a larger
class of functions by using the Risch-Norman algorithm (Risch, [1969)). In contrast, integral_steps
is essentially based on hand-crafted patterns and heuristics-based integration rule search. Hence,
integral_steps can not integrate all the functions which integrate can, and this limitation extends to
guided_integral_steps.

4.2 Efficiency Comparison

The average runtime of guided_integral_steps was 0.21s compared to 0.48s for integral_steps,
resulting in a 2.28 X improvement. guided_integral_steps explored an average number of 16.7

branches before reaching the integral compared to 94.2 branches for integral_steps, making the
depth-first search procedure around 6 x more efficient. See Section 4] for more details.

4.3 Generalization Beyond the Generator - SymPy integral_steps

We have observed that guided_integral_steps can integrate some functions that integral_steps can
not, presented in Table[3] This indicates the generalizability of our approach over the original data
generation process.

Table 3: Examples where the original integral_steps fails but guided_integral_steps succeeds.

Function Integral

e® + (cos™1(x))? z(cos™H(z))? — 22 — 2/1 — 22(cos ™! (2))? + €®
z + (sin~!(z))? % + 2(sin™*(2))? + 3z + 21 — 22 sin ! (z)
sin(ﬁtan(5)) 2(—\ﬂm) COS(\ﬂm)t:zr(lS)HW
(cos™H(z))? + cos™1(x) + % z(cos™H(x))? + zcos™(z) — %”

2v/1 — 22 cos™H(x) — V1 — 22

4.4 Depth-First-Search - # Branches Explored
We have measured the number of branches explored by integral_steps and guided_integral_steps

during their search procedures on the FWD test set. Fig. 2] shows that guided_integral_steps explores
fewer than 20 branches for most of the functions in contrast to 100 branches for integral_steps.

800

600

N
o
S

frequency
frequency

200 100

0 20 40 60 80 100 20 40 60 80 100
number of branches explored number of branches explored

(a) guided_integral_steps (b) integral_steps

Figure 2: Histograms of # branches explored during depth-first-search on the FWD test set.

5 Conclusion

We present a novel approach to the symbolic integration problem via deep learning. We frame inte-
gration as a search problem and accelerate it using Al resulting in a fast, accurate, and interpretable
approach. We introduce a new dataset called SIRD, where the task is to predict the integration rule
that should be applied to a given function to find its integral. We show that a model trained on a
portion of SIRD can be used to guide the search for the integral, outperforming heuristics-based
search and showing superior generalization ability. Our work is a preliminary exploration of using
deep learning for step-by-step symbolic integration, leading the way for further research on the topic.

6 Acknowledgements

We thank the Fatima Fellowshi]ﬂ and Hugging Face for organizing and sponsoring the Fatima
Research Fellowship program.

References

Oishik Chatterjee, Isha Pandey, Aashish Waikar, Vishwajeet Kumar, and Ganesh Ramakrishnan.
Warm: A weakly (+ semi) supervised math word problem solver. In Proceedings of the 29th
International Conference on Computational Linguistics, pp. 4753-4764, 2022.

Simon Frieder, Luca Pinchetti, Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas Lukasiewicz,
Philipp Christian Petersen, Alexis Chevalier, and J J Berner. Mathematical capabilities of chat-
gpt. ArXiv, abs/2301.13867, 2023. URL https://api.semanticscholar.org/CorpusID:
256415984,

Zeyu Huang, Xiaofeng Zhang, Jun Bai, Wenge Rong, Yuanxin Ouyang, and Zhang Xiong. Solv-
ing math word problems following logically consistent template. In 2023 International Joint
Conference on Neural Networks (IJCNN), pp. 01-08. IEEE, 2023.

Yu Ji and Song Gao. Evaluating the effectiveness of large language models in representing textual
descriptions of geometry and spatial relations. ArXiv, abs/2307.03678, 2023. URL https:
//api.semanticscholar.org/CorpusID:259375953.

Lukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. arXiv preprint arXiv:1511.08228,
2015.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014. URL
https://arxiv.org/abs/1412.6980.

Guillaume Lample and Frangois Charton. Deep learning for symbolic mathematics. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=
SleZYeHFDS.

Sarah Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk. Deep network guided proof
search. arXiv preprint arXiv:1701.06972, 2017.

Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondiej Certik, Sergey B. Kirpichev, Matthew
Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh, Thilina Rathnayake, Sean
Vig, Brian E. Granger, Richard P. Muller, Francesco Bonazzi, Harsh Gupta, Shivam Vats, Fredrik
Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R. Terrel, gtépén Roucka, Ashutosh
Saboo, Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony Scopatz. Sympy: symbolic
computing in python. PeerJ Computer Science, 3:¢103, January 2017. ISSN 2376-5992. doi:
10.7717/peerj-cs.103. URL https://doi.org/10.7717/peerj-cs.103|

Kimia Noorbakhsh, Modar Sulaiman, Mahdi Sharifi, Kallol Roy, and Pooyan Jamshidi. Pretrained
language models are symbolic mathematics solvers too! ArXiv, abs/2110.03501, 2021. URL
https://api.semanticscholar.org/CorpusID:238419670.

Maysum Panju and Ali Ghodsi. A neuro-symbolic method for solving differential and functional
equations. arXiv preprint arXiv:2011.02415, 2020.

Bartosz Piotrowski, Josef Urban, Chad E Brown, and Cezary Kaliszyk. Can neural networks learn
symbolic rewriting? arXiv preprint arXiv:1911.04873, 2019.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
CoRR, abs/2009.03393, 2020. URL https://arxiv.org/abs/2009.03393.

Albert Rich, Patrick Scheibe, and Nasser Abbasi. Rule-based integration: An extensive system of
symbolic integration rules. Journal of Open Source Software, 3(32):1073. doi: 10.21105/joss.
01073.

Scf. https://www.fatimafellowship.com/

https://api.semanticscholar.org/CorpusID:256415984
https://api.semanticscholar.org/CorpusID:256415984
https://api.semanticscholar.org/CorpusID:259375953
https://api.semanticscholar.org/CorpusID:259375953
https://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=S1eZYeHFDS
https://openreview.net/forum?id=S1eZYeHFDS
https://doi.org/10.7717/peerj-cs.103
https://api.semanticscholar.org/CorpusID:238419670
https://arxiv.org/abs/2009.03393
https://www.fatimafellowship.com/

Robert H Risch. The problem of integration in finite terms. Transactions of the American Mathemati-
cal Society, 139:167-189, 1969.
Xiaojuan Tang, Zilong Zheng, Jiaqi Li, Fanxu Meng, Song-Chun Zhu, Yitao Liang, and Muhan Zhang.

Large language models are in-context semantic reasoners rather than symbolic reasoners. ArXiv,
abs/2305.14825, 2023. URL https://api.semanticscholar.org/CorpusID:258865899.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, . ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.
neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper . pdf!

Lei Wang, Dongxiang Zhang, Lianli Gao, Jingkuan Song, Long Guo, and Heng Tao Shen. Mathdqn:
Solving arithmetic word problems via deep reinforcement learning. In Proceedings of the AAAI
conference on artificial intelligence, volume 32, 2018.

Wojciech Zaremba, Karol Kurach, and Rob Fergus. Learning to discover efficient mathematical
identities. Advances in Neural Information Processing Systems, 27, 2014.

https://api.semanticscholar.org/CorpusID:258865899
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

A Symbolic Integration Datasets from |Lample & Charton| (2020)

Lample & Charton| (2020) released the following three symbolic integration datasets:

* Forward Dataset (FWD): For this dataset, integrate function from SymPy (Meurer et al.,
2017)) was used. The direction of generation was from generated functions to integrals.

* Backward Dataset (BWD): Fot this dataset, randomly generated functions were differenti-
ated. Hence, the function becomes integral of its differential. The direction of generation
was from generated integrals to functions(differential of integrals).

* Backward generation with integration by parts (IBP): For this dataset, Integration
by parts was used to generate the function-integration pair. For two randomly generated

functions u and v:
/udv:uv—/vdu

Based on which of [udv and [vdu is already present in the generated data another one
can be generated.

The major difference between these methods is that for BWD samples, integrals are shorter than the
functions, while for the FWD samples, it is the other way around.

In this work, we have used the FWD dataset. As our problems deal with the intermediary steps’
integration rules while solving integral of the functions rather than actual integrals, the ideal source
dataset would be with diverse functions and one with short length functions so that integral_steps can
complete heuristics search faster on a function. Because of the nature of the generation of the FWD
dataset and that it was generated using integrate function from SymPy, integral_steps would be able
to solve for functions relatively faster while generating samples for SIRD and hence relatively more
number of samples compared to other two datasets.

B SymPy Functions & SIRD Sample Generation Script

B.1 Functions from SymPy

For the generation of FWD, [Lample & Charton|(2020) used integrate function from SymPy and we
used the modified version of integral_steps function to generate samples for SIRD utilizing functions
from FWD. Here, we provide a brief explanation for both the functions and on what grounds these
differ.

* Integrate Function: This is the principal method to integrate functions in SymPy. This
function uses the Risch-Norman algorithm (Rischl [1969) and can solve both definite and
indefinite integrals, though it doesn’t provide the steps of integration.

* Integral_steps Function:

— This function imitates how a human would solve an integral problem step by step. It
outputs all the intermediate steps (expressions and integration rules) required to solve
the integral of a given function. Further, these intermediate steps can be input to another
function _manualintegrate which can apply the steps to generate the final integral of
the function.

— To calculate output of integral_steps, various integration rules’ are implemented in
SymPy. Whenever it is called with an input, it heuristically searches which integral
rule to apply based on a defined order in the codebase. There are certain functions such
as the add_rule which recursively again calls integral_steps to solve the subproblems.
It tries all the potential rules in a predefined order to either output steps to solve the
integration of a function or fallback to DontKnowRule.

It is clear based on the description, that infegrate function is far more capable to solve for an end-
to-end integration problem compared to integral_steps. However, for our study, we rely on the
latter as we require integration rules instead of just the final integral for a function. Also currently,
integral_steps is not very capable of generating integration rules for complex functions involving
hyperbolic trigonometric functions.

Given the nature of integral_steps implementation for many functions, it might go into an infinite
search loop which either can be broken by timeouts or Maximum Call Stack Exceeded.

B.2 Modified integral_steps to Generate SIRD Samples

As described in section [B.1] integral_steps function generates all the intermediary steps’ expressions
and integration rules while solving for a function using heuristically searching for correct rules to
apply. But it generates its output in certain syntax which can be highly dynamic for different types of
inputs. Following are the examples of its output:

Function: 22 + 2z

Output from integral_steps: AddRule(substeps=[PowerRule(base=x, exp=2, context=x**2, sym-
bol=x), ConstantTimesRule(constant=2, other=x, substep=PowerRule(base=x, exp=1, context=x,
symbol=x), context=2%x, symbol=x)], context=x**2 + 2*x, symbol=x)

Function: ‘" (*) /(1 + z?)

Output from integral_steps: AlternativeRule(alternatives=[URule(u_var=_u, u_func=exp(atan(x)),
constant=1, substep=ConstantRule(constant=1, context=1, symbol=_u), context=exp(atan(x))/(x**2
+ 1), symbol=x), URule(u_var=_u, u_func=atan(x), constant=1, substep=ExpRule(base=E,
exp=_u, context=exp(_u), symbol=_u), context=exp(atan(x))/(x**2 + 1), symbol=x)], con-
text=exp(atan(x))/(x**2 + 1), symbol=x)

Writing parsing rules for the above output can make things unnecessarily complex and there can be
many exceptions given the highly dynamic nature of output syntax. Hence, to get exact subexpression-
integration rule pairs for a function, we created a data generation script by doing the following:

* Modified each integration rule function in SymPy to output a tuple of subexpression and
rule name.

* For rules like substitution_rule which require to transform a subexpression of a function to
get applied we also added a subexpression to be transformed along with the rule name in the
output tuple.

* Modified the flow of infegral_steps to accommodate this extra output along with the original.

Following are examples of output from our data generation script for the same functions:

Function: z2 + 2z

Output from Our Script: (AddRule(substeps=[PowerRule(base=x, exp=2, context=x**2, sym-
bol=x), ConstantTimesRule(constant=2, other=x, substep=PowerRule(base=x, exp=1, context=x,
symbol=x), context=2%*x, symbol=x)], context=x**2 + 2*x, symbol=x),
[(Integrallnfo(integrand=x**2 + 2*x, symbol=x), ’add_rule’),

(Integrallnfo(integrand=x**2, symbol=x), ’power_rule’),

Integrallnfo(integrand=2%x, symbol=x), ’'mul_rule’,

(Integrallnfo(integrand=x, symbol=x), ’power_rule’)]).

Function: '@ (®) /(1 + 2?)

Output from Qur Script: (AlternativeRule(alternatives=[URule(u_var=_u, u_func=exp(atan(x)),
constant=1, substep=ConstantRule(constant=1, context=1, symbol=_u), context=exp(atan(x))/(x**2
+ 1), symbol=x), URule(u_var=_u, u_func=atan(x), constant=1, substep=ExpRule(base=E,
exp=_u, context=exp(_u), symbol=_u), context=exp(atan(x))/(x**2 + 1), symbol=x)], con-
text=exp(atan(x))/(x**2 + 1), symbol=x),

[(Integrallnfo(integrand=exp(atan(x))/(x**2 + 1), symbol=x), ’substitution_rule’, exp(atan(x))),
(Integrallnfo(integrand=1, symbol=_u), ’constant_rule’),
(Integrallnfo(integrand=exp(atan(x))/(x**2 + 1), symbol=x), ’substitution_rule’, atan(x)),
(Integrallnfo(integrand=exp(_u), symbol=_u), ’exp_rule’)]).

This way it becomes straightforward to parse the expression-integration rule pairs for a function
constituting SIRD samples.

C Data Validation

Our data generation script generates a list of expression-integration rule pairs and the original output
of the integral_steps function. We validated the correctness of the data generation script using two
methods. Firstly, we compared the outputs of guided_integral_steps and integral_steps. Secondly, we
applied the generated rules to obtain the integral and then differentiated it back to compare it with the
original function. This ensured that the data generation script generated integration rules correctly.

D Architecture and Hyperparameters

We used transformer architecture with the following hyperparameters: 8 attention heads, 6 layers,
and an embedding size of 512. We have used Adam optimizer (Kingma & Bal 2014) for training our
model with a learning rate of 4 * 10~5. We trained the model on batches of 256 samples. We limited
the number of tokens in input expressions to 384 while processing data for training the model.

E SIRD-2M: Dataset Statistics

Symbolic Integration Rules Dataset (SIRD) consists of 2 million+ samples including 24 integration
rules. Table [dlists the frequency of different integration rules in SIRD.

Table 4: Integration rules and their frequencies in SIRD-2M.

Rule Name No. of Samples
add_rule 827305
mul_rule 431507
partial_fractions_rule 224271
substitution_rule 169110
cancel_rule 166081
distribute_expand_rule 124024
parts_rule 93199
sqrt_linear_rule 27499
quadratic_denom_rule = 19418
constant_rule 12928
trig_rule 4780
trig_expand_rule 4134
sqrt_quadratic_rule 3400
trig_sincos_rule 785
inverse_trig_rule 589
power_rule 339
trig_sindouble_rule 273
trig_tansec_rule 172
special_function_rule 24
trig_cotcsc_rule 15

trig_substitution_rule 7
hyperbolic_rule 6
exp_rule 2
trig_product_rule 1

F Input Expression Length

Before training a sequence-to-sequence model on SIRD-2M, we filtered the training data samples by
the following criteria: the input expression prefix form should not exceed 384 tokens in length, and
the output sequence, which includes both the rule name and the accompanying expression for eligible
rules should be no longer than 29 tokens. Fig. [3]displays the distribution of input sequence lengths
for all samples in SIRD-2M.

10

frequency

200000

150000

100000

50000

0 20 40 60 80
input sequence length

Figure 3: The histogram of the sequence lengths for functions in SIRD-2M.

11

100

	Introduction
	Symbolic Integration Rules Dataset (SIRD)
	Data Source
	Data Generation, Validation & Processing

	Experiments
	Results and observations
	Accuracy Comparison
	Efficiency Comparison
	Generalization Beyond the Generator - SymPy integral_steps
	Depth-First-Search - # Branches Explored

	Conclusion
	Acknowledgements
	Symbolic Integration Datasets from Lample2020Deep
	SymPy Functions & SIRD Sample Generation Script
	Functions from SymPy
	Modified integral_steps to Generate SIRD Samples

	Data Validation
	Architecture and Hyperparameters
	SIRD-2M: Dataset Statistics
	Input Expression Length

