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Abstract

We present LLMSTEP, a tool for integrating a language model into the Lean proof
assistant. LLMSTEP is a Lean 4 tactic that sends a user’s proof state to a server
hosting a language model. The language model generates suggestions, which are
checked in Lean and displayed to a user in their development environment. We
provide a baseline language model, along with code for fine-tuning and evaluation
to support further development. We provide server implementations that run on
CPU, a CUDA GPU, or a Google Colab notebook, as a step towards fast, effective
language model suggestions for any user.

1 Introduction

Interactive proof assistants such as Lean [de Moura et al., 2015], Isabelle [Wenzel et al., 2008], and
Coq [Team, 2019] enable the verification of mathematics and software using specialized programming
languages [Avigad, 2023, Ringer et al., 2019]. The emerging area of neural theorem proving integrates
neural language models with interactive proof assistants [First et al., 2023, Polu and Sutskever, 2020,
Polu et al., 2022, Yang et al., 2023, Welleck, 2023]. Doing so can be mutually beneficial: proof
assistants provide correctness guarantees on language model outputs, while language models may
help make proof assistants easier to use. A key part of proof development is determining which step
to take next at each state of a proof (i.e., which tactic to use). Therefore, a tool that suggests useful
next steps within a user’s development environment could significantly ease proof development.

We present LLMSTEP, a tool for suggesting proof steps (i.e., tactics) with a language model in the
Lean proof assistant (Figure 1). LLMSTEP is a Lean 4 tactic that sends a user’s proof state to a server
hosting a language model. The language model generates suggestions, which are checked in Lean and
displayed to a user in their development environment. LLMSTEP is agnostic to the choice of language
model, learning framework, and evaluation framework. We provide a baseline language model and
example code for fine-tuning and evaluation. The baseline language model is fine-tuned for a standard
tactic-prediction task [Han et al., 2022], and outperforms recent open-source tactic-prediction models.
Finally, LLMSTEP supports several runtimes, with servers that run on CPU, a GPU, or in a Google
Colab notebook, as a step towards fast, powerful language model suggestions for any user.1

2 Related Work

Automatically generating proof steps with language models is an active area of research (e.g., Polu
and Sutskever [2020], Han et al. [2022], Yang et al. [2023], Azerbayev et al. [2023], Welleck [2023]).
Closest to our work is the gpt-f tactic from Han et al. [2022], which generates suggestions in Lean 3
by calling a (now disabled) Open-AI API. LLMSTEP is inspired by the idea of language-model based
suggestions, but differs in several ways: (1) LLMSTEP is built with open-source components, and
can run on a user’s own device. (2) LLMSTEP supports prefixed and checked suggestions, detailed
below. (3) LLMSTEP is in Lean 4, requiring an implementation using Lean 4 metaprogramming. (4)

1https://github.com/wellecks/llmstep

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Workshop on MATH-AI.
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Figure 1: LLMSTEP is a tool for receiving proofstep suggestions from a language model. A user
calls LLMSTEP in a proof (left), which sends the current state of the proof and a prefix to a server. A
language model generates proofstep suggestions which are checked in Lean and shown to the user
(right). LLMSTEP supports a variety of compute environments, with servers that run on CPU, CUDA
GPU, or Google Colab. LLMSTEP is implemented as a Lean 4 metaprogram with Python servers.

LLMSTEP provides code for fine-tuning and evaluating future models. Recently, after the release
of LLMSTEP, LeanInfer [Song et al., 2023] provides the ability to run supported language models
on CPU through Lean’s Foreign Function Interface (FFI). Similar to LLMSTEP it provides tactic
suggestions, and uses LLMSTEP’s utilities to check, format, and display its suggestions. LLMSTEP
additionally supports prefixed suggestions, offers fast GPU inference, and is agnostic to the language
model implementation. Proofster [Agrawal et al., 2023] is a related tool offering machine-learning
based proof synthesis in Coq via a web interface, while LLMSTEP offers Lean 4 language-model
tactic suggestions in the development environment.

3 Approach

LLMSTEP is called by writing llmstep <prefix> within a proof, which returns suggestions that
start with <prefix> (for instance, llmstep "" or llmstep "exact"). LLMSTEP uses Lean to
check whether each suggestion is valid and/or completes the proof. The suggestions are displayed in
the Lean 4 VS Code Infoview, which is a standard interface used in proof development. A user can
click a suggestion, which places it in the proof. The proof is either complete, or it transitions to the
next state and the user continues writing the proof. We detail LLMSTEP’s implementation below.

3.1 Implementation

LLMSTEP consists of three parts: (1) a Lean tactic, (2) a language model, (3) a server.

Lean tactic. Writing a proof can be seen as a sequential process (x1, y1), (x2, y2), . . . of states
xt and tactics yt. A state contains what is left to prove (the goal), and available information (the
hypotheses). A tactic transitions the proof to a new state. If the state contains no remaining goals, the
proof is complete. Concretely, a user applies tactics by writing Lean code, Lean keeps track of the
state, and the development environment shows the state and the written code.

LLMSTEP is itself a tactic. LLMSTEP takes a prefix as an argument, i.e., a sequence of tokens
that will start the suggested tactics. For instance, "intr" would lead to suggested tactics that
start with "intr", such as intro h x. LLMSTEP sends the current state xt and the prefix to a
server, LLMSTEP receives suggestions in response, and LLMSTEP checks each suggestion using Lean.
Namely, a checked suggestion is valid if applying the tactic leads to a state with no errors and at least
one goal. A tactic is complete if it leads to a state with no errors and no goals. Otherwise the tactic is
invalid. LLMSTEP displays complete, valid, and invalid tactic suggestions using different colors.
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Language model. LLMSTEP uses a language model to predict the next tactic given the current
tactic state. While the language model can be arbitrary, one approach is to use a model that has been
fine-tuned on (state, next-tactic) examples. For instance, the default language model in LLMSTEP is
fine-tuned on sequences of the form:

[GOAL]tactic-state[PROOFSTEP]next-tactic<|endoftext|>

This format corresponds to the proofstep objective described in Han et al. [2022].

By default, LLMSTEP uses a Pythia 2.8b language model [Biderman et al., 2023] fine-tuned on (state,
next-tactic) examples extracted from Lean Mathlib [mathlib, 2020] via the LeanDojo Benchmark
4 dataset [Yang et al., 2023]. The Pythia 2.8b model is publicly available on Huggingface (link).
LLMSTEP is agnostic to the language model implementation, and includes direct support for ReProver
[Yang et al., 2023] and other Huggingface models.

Server. LLMSTEP uses a server to handle requests from the Lean tactic and host the language model.
The server queries the language model and relays responses back to the Lean tactic. The server is the
key computational bottleneck in LLMSTEP, as it hosts a (possibly large) language model. LLMSTEP
supports a variety of compute constraints, with servers that run on CPU, a CUDA GPU, or a Google
Colab notebook with GPU, as well as a server with fast inference via vLLM [Kwon et al., 2023].

Usage. First, the user starts a server based on their hardware. Currently, servers can run on CPU,
CUDA GPU, or Google Colab notebooks. Second, the user imports LLMSTEP as a Lean 4 package.
Third, the user calls LLMSTEP by writing llmstep <prefix>, which returns suggestions that start
with the prefix passed to LLMSTEP. The suggestions are displayed in the Infoview.

4 Evaluation

First, we benchmark the default language model’s utility for providing suggestions via proof search–
i.e., attempting to fully prove theorems using the language model and a search algorithm.

Proof search. Proof search requires a search algorithm and a method for interacting with Lean. We
use best-first search, and provide a self-contained implementation with LeanDojo interaction.

Best-first search is parameterized by the maximum number of generated tactics, defined as the number
of attempts × expansion size per iteration × maximum iterations, subject to a timeout. We use a
10 minute timeout as in Yang et al. [2023], and use beam search with expansion size 32 based on
memory constraints. We compare the Pythia model to ReProver [Yang et al., 2023] without retrieval.
To equal the 64 expansions used in Yang et al. [2023], we also report results with a second attempt
of 32 samples (i.e., 2×32). We report mathlib4-test from Yang et al. [2023] and miniF2F-test from
Thakur et al. [2023], since miniF2F without retrieval was not available in Yang et al. [2023].

Model Search mathlib4-valid mathlib4-test miniF2F-valid miniF2F-test
ReProver 1× 64 – 48.6% – 22.1% (54/244)
Pythia 2.8b 1× 32 48.8% 47.6% 26.2% 27.9% (68/244)
Pythia 2.8b 2× 32 51.2% 50.1% 26.2% 27.9% (68/244)

Table 1: Proofsearch on the Lean Dojo random evaluation splits and miniF2F.

We validate the Pythia model in Table 1, finding that it can exceed the number of closed theorems by
ReProver on Lean Dojo Benchmark 4 and miniF2F. Note that LLMSTEP supports suggestions from
either model. The ReProver model is particularly useful on CPU, as we discuss next.

Runtime. We tested the runtime of LLMSTEP with different compute environments and hardware.
The experiments were done on a set of 17 examples, each containing a tactic state and a prefix. For
each example, we measured the time for the server to return N suggestions, using LLMSTEP with the
Pythia 2.8b and ReProver (leandojo-lean4-tacgen-byt5-small) language models.

As shown in Table 2, LLMSTEP with GPU-based inference can yield suggestions in 1 second or less,
with vLLM inference approaching real-time (0.11s). As shown in Figure 2, vLLM remains fast as the
number of suggestions increases. Note that vLLM does not support the model architecture used in
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Figure 2: Runtime comparison of different compute environments and models supported by LLMSTEP.

Compute Model Hardware N Time

CPU Pythia 2.8b MB Pro 2.6 GHz 6-Core Intel Core i7 1 8.39s
CPU ReProver MB Pro 2.6 GHz 6-Core Intel Core i7 1 0.95s

CPU Pythia 2.8b MB Pro 2.6 GHz 6-Core Intel Core i7 10 49.10s
CPU ReProver MB Pro 2.6 GHz 6-Core Intel Core i7 10 3.16s

Colab GPU Pythia 2.8b NVIDIA T4 GPU 1 1.01s
Colab GPU Pythia 2.8b NVIDIA T4 GPU 10 1.68s

GPU w/ vLLM Pythia 2.8b NVIDIA GTX 1080Ti 1 0.11s
GPU w/ vLLM Pythia 2.8b NVIDIA GTX 1080Ti 10 0.25s

Table 2: Runtime experiments done with different compute resources and hardware, using the Pythia
2.8b and Reprover models in LLMSTEP. N refers to the number of generated suggestions. The
experiments report average runtime across 17 examples.

ReProver. However, on CPU the ReProver model is much faster due to its small parameter count.
Therefore, we suggest using Pythia when a GPU is available, and Reprover on CPU.

Qualitative examples. Figures 1 and 3 show example suggestions made by LLMSTEP.

Figure 3: In this example, the user inputs an empty prefix. LLMSTEP returns five suggestions. The
first two suggestions each finish the proof, and the last two are valid.

5 Towards contextual suggestions

Real-world proofs often use theorems and definitions that are unique to the proof development. A key
limitation of the models described above is that they lack context beyond the current proof state. That
is, the model pθ(yt|xt) only receives the current proof state xt as input. As a result, the model cannot
use newly defined theorems, definitions, and other information from the current proof development,
unless the proof development was seen during training.

To remove this limitation, we explore LLMSTEP suggestions that use the preceding file contents as
additional context. To do so, we prompt and generate from a suitable language model two times:

yt ∼ p(yt|zt), (1)

yt ∼ p(yt|xt; {(x′, y′)}), (2)
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where zt is the preceding contents of the source file up to invocation of LLMSTEP, and {(x′, y′)}
denotes a set of (state, tactic) examples. We return the union of generated tactics as suggestions.
Naturally, there are many other possible ways to incorporate context, which we leave for future work.

We use the LLEMMA [Azerbayev et al., 2023] language model, since it was shown to have few-shot
tactic prediction and other related capabilities in Azerbayev et al. [2023]. We present two case
studies here, and implement contextual suggestions in the LLMSTEP tool for users to explore further.

The first case study in Figure 4 is a toy example demonstrating the need for contextual suggestions.
The theorem requires using properties of the newly defined my_object. The contextual LLMSTEP
suggestions use the newly defined structure’s cool_property successfully, completing the proof.

Figure 4: Contextual LLMSTEP suggestions using LLEMMA.

The second case study in Figure 5 shows LLMSTEP within the real-world formalization of the Cedar
policy language from Amazon Web Services (github.com/cedar-policy/cedar-spec/cedar-lean). The
theorem and its proof rely on project-specific code (e.g., Request, scope_analysis_is_sound)
that are outside the domain of models trained only on Mathlib. The contextual LLMSTEP suggestions
successfully use scope_analysis_is_sound to finish the proof.

Figure 5: Contextual LLMSTEP suggestions on a formalization of the AWS Cedar policy language.

6 Conclusion

We present LLMSTEP, a tool designed to make it easy for a Lean 4 user to obtain tactic suggestions
from a language model. In addition, we provide a fine-tuned language model that achieves strong
performance on mathlib and miniF2F. Active areas of work include fast CPU inference, improved
models, and tasks beyond tactic prediction. We hope that LLMSTEP’s simple, model-agnostic recipe
opens up new research avenues on generative tools for formal mathematics and verification.
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