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Abstract

Enriching the quality of early childhood education with interactive math learning at
home systems, empowered by recent advances in conversational Al technologies,
is slowly becoming a reality. With this motivation, we implement a multimodal
dialogue system to support play-based learning experiences at home, guiding kids
to master basic math concepts. This work explores the Spoken Language Under-
standing (SLU) pipeline within a task-oriented dialogue system, with cascading
Automatic Speech Recognition (ASR) and Natural Language Understanding (NLU)
components evaluated on our Kid Space home deployment data with children going
through gamified math learning activities. We validate the advantages of a multi-
task architecture for NLU and experiment with a diverse set of pretrained language
representations for Intent Recognition and Entity Extraction in the math learning
domain. To recognize kids’ speech in realistic home environments, we investigate
several ASR systems, including the Google Cloud and the recent open-source Whis-
per solutions with varying model sizes. We evaluate the SLU pipeline by testing
our best-performing NLU models on noisy ASR output to inspect the challenges of
understanding children’s speech for math learning in authentic homes.

1 Introduction and Background

One of the preeminent ways to diminish societal inequity is promoting STEM (i.e., Science, Technol-
ogy, Engineering, Math) education, specifically ensuring that children succeed in mathematics. It is
well-known that acquiring basic math skills at younger ages builds students up for success, regardless
of their future career choices|Cesarone|[2008], Torpey|[2012]. For math education, interactive learn-
ing environments through gamification present substantial leverages over more traditional learning
settings for studying elementary math subjects, particularly with younger learners [Skene et al.|[2022].
With that goal, conversational Al technologies can facilitate this interactive learning environment
where students can master fundamental math concepts. Despite these motivations, studying spoken
language technologies for younger kids to learn basic math is a vastly uncharted area of Al

This wor discusses a modular goal-oriented Spoken Dialogue System (SDS) specifically targeted
for kids to learn and practice basic math concepts at home setup |(Okur et al.| [2023a]. Initially,
a multimodal dialogue system Sahay et al.| [2019]] is implemented for Kid Space |Anderson et al.
[2018] to be deployed in authentic classrooms. During this real-world deployment at an elementary
school |Aslan et al.|[2022], the COVID-19 pandemic impacted the globe, and school closures forced
students to switch to online learning at home. To support this sudden shift, previous school use
cases are redesigned for new home usages|Aslan et al.|[2023]], and our dialogue system is recreated
to deal with interactive math games at home. While the play-based learning activities are adjusted
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for home with a much simpler setup, the multimodal aspects of these games are partially preserved
along with the fundamental math concepts for early childhood education. These math skills cover
using ones and tens to construct numbers and foundational arithmetic concepts and operations
such as counting, addition, and subtraction. The multimodal aspects of these games include kids’
spoken interactions with the system while answering math questions and carrying out game-related
conversations, physical interactions with the objects (i.e., placing cubes and sticks as manipulatives)
on a visually observed playmat, performing specific pose and gesture actions (e.g., jumping, standing,
air high-five).

Our domain-specific SDS pipeline |Okur et al.| [2022c] consists of multiple cascaded components,
namely Automatic Speech Recognition (ASR), Natural Language Understanding (NLU), Multi-
modal Dialogue Manager (DM), Natural Language Generation (NLG), and Text-to-Speech (TTS)
synchronizing the agent utterances with virtual character animations on Student User Interface (UI).
Here, we concentrate on the Spoken Language Understanding (SLU) task on kids’ speech at home
environments while playing basic math games. Such application-dependent SLU approaches com-
monly involve two main modules applied sequentially: (i) ASR module that recognizes speech and
transcribes the spoken utterances into text, and (ii)) NLU module that interprets the semantics of those
utterances by processing the transcribed text. Intent Recognition (IR) and Named Entity Recognition
(NER) are essential sub-tasks within the NLU module to resolve the complexities of human language
and extract meaningful information for the application at hand.

This study leans on assessing and improving the SLU task performance on kids’ utterances at home
by utilizing real-world deployment data. We first investigate the ASR and NLU module evaluations
independently. Then, we inspect the overall SLU pipeline (i.e., ASR+NLU) performance on kids’
speech by evaluating our NLU tasks on ASR output at home environments. As the erroneous and
noisy speech recognition output would lead to incorrect intent and entity predictions, we aim to
understand these error propagation consequences with SLU for children in the math learning domain.
We experiment with various recent ASR solutions and diverse model sizes to gain more insights
into their capabilities to recognize kids’ speech at home. We then analyze the effects of these ASR
engines on understanding intents and extracting entities from children’s utterances.

2 Home Learning Datasets and Use Cases

For our gamified basic math learning usages, we utilize two datasets. The first set is proof-of-concept
(POC) data manually constructed based on UX studies and partially adopted from our previous
school data |Okur et al.|[2022a]]. This POC data is used to train and cross-validate various NLU
models to develop the best practices. The second set is our recent home deployment data collected
from 12 kids (ages 7-8) experiencing our multimodal math learning system at authentic homes. The
audio-visual data is transcribed manually, and user utterances are annotated for intent and entity types
we identified for each learning activity. Table[I]compares the NLU statistics for Kid Space Home
POC and Deployment datasets. Manually transcribed children’s utterances in the deployment set

Table 1: Kid Space Home POC and Deployment Dataset Statistics

NLU Data Statistics POC  Deployment
# Intents Types 13 12
Total # Utterances 6,245 733
# Entity Types 3 3
Total # Entities 5,023 497
Min # Utterances per Intent 105 1
Max # Utterances per Intent 1,051 270
Avg # Utterances per Intent 480.4 61.1
Min # Tokens per Utterance 1 1
Max # Tokens per Utterance 40 33
Avg # Tokens per Utterance 4.96 2.88
# Unique Tokens (Vocab Size) 1,992 362
Total # Tokens 30,976 2,113




are used to test our best NLU models trained on POC data. We run multiple ASR engines on audio
recordings, where automatic transcripts (i.e., ASR output) are utilized to compute the word error
rates (WER) to assess ASR model performances on kids” speech. We also evaluate the SLU pipeline
(ASR+NLU) by testing NLU models on ASR output from deployment data.

Our home deployment setup includes a playmat with physical manipulatives, a laptop with a built-in
camera, a lapel mic, and a depth camera on a tripod |Aslan et al.|[2023]]. Home use cases follow
a particular flow of activities such as Introduction (Meet & Greet), Warm-up Game (Red Light
Green Light), Training Game, Learning Game, and Closure (Dance Party). After meeting with the
virtual character and playing jumping games, the child starts the training game, where the agent asks
for help planting flowers. The agent presents tangible manipulatives, cubes representing ones and
sticks representing tens, and instructs the kid to answer basic math questions using these objects,
going through multiple rounds of practice questions where flowers in child-selected colors bloom
as rewards. In the actual learning game, the agent presents clusters of questions involving ones &
tens, and the child provides verbal (e.g., stating the numbers) and visual answers (e.g., placing the
cubes and sticks on the playmat). The agent outputs scaffolding utterances and performs animations
to show and tell how to solve basic math questions, and the interaction ends with a dance party. Some
of our intents can be considered generic (e.g., state-name, affirm, deny, repeat, out-of-scope), but
some are highly domain-specific (e.g., answer-flowers, answer-valid, answer-others, state-color,
had-fun-a-lot, end-game) or math-related (e.g., state-number, still-counting). The entities we extract
are activity-specific (i.e., name, color) and math-related (i.e., number).

3 NLU and ASR Models

Customizing open-source Rasa framework |Bocklisch et al.[[[2017] as a backbone, we investigate
several NLU models for Intent Recognition and Entity Extraction tasks to implement our math
learning conversational Al system for home. Our baseline approach is inspired by the StarSpace Wu
et al.| [2018] model. We enrich this text classifier by incorporating SpaCy Honnibal et al.| [2020]
pretrained word embeddings in the NLU pipeline. CRF Entity Extractor |[Lafferty et al.| [2001] is
also part of this baseline NLU. We explore the advantages of switching to a more recent DIET
model [Bunk et al.|[2020] for joint Intent and Entity Recognition, a multi-task architecture with
two-layer Transformers shared for NLU tasks. DIET combines dense features (e.g., pretrained
embeddings) with sparse features (e.g., token-level encodings of n-grams). We first feed the SpaCy
embeddings used in our baseline (StarSpace) as dense features to DIET. Then, we adopt DIET with
pretrained BERT |Devlin et al.|[2019], RoBERTa |Liu et al.| [2019]], and DistilBERT |Sanh et al.| [2019]
word embeddings, as well as ConveRT [Henderson et al.|[2020] and LaBSE [Feng et al.|[2022]] sentence
embeddings to inspect the effects of these autoencoding-based language representations. We also
evaluate pretrained embeddings from models using autoregressive training such as XL Net Yang
et al.[[2019]], GPT-2 Radford et al.|[2019]], and DialoGPT Zhang et al.| [2020] (excluded GPT-3 and
beyond that are not open-source). Next, we explore recent math-language representations trained
on math datasets for our basic math learning dialogue system. MathBERT [Shen et al.| [2021] is
pretrained on large math corpora covering pre-k to college-graduate materials. We enhance DIET by
incorporating embeddings from MathBERT-base and MathBERT-custom models, pretrained with
BERT-base original and math-customized vocabularies, respectively. Math-aware-BERT and Math-
aware-RoBERTa models |Reusch et al.| [2022]] are initialized from BERT-base and RoBERTa-base,
and further pretrained on Math StackExchange with improved LaTeX tokens for math formulas in
ARQMath-3 tasks Mansouri et al.|[2022]].

For the ASR module, we explore three main speech recognizers. Rockhopper ASR |Stemmer et al.
[2017] is the baseline local approach, whose acoustic models rely on Kaldi |Povey et al.| [2011]]
resources trained on adult speech data. In the past, when Rockhopper’s language models fine-tuned
with limited in-domain kids’ utterances from previous school usages, WER decreased by 40% for
kids but remained 50% higher than adult WER. Rockhopper can run offline locally on low-power
devices, which is better for security, privacy, latency, and cost. Google ASR is a commercial cloud
solution providing high-quality speech recognition service but requiring connectivity and payment,
which cannot be fine-tuned as Rockhopper. Whisper ASR [Radford et al.|[2022] is an open-source
adjustable solution that can run locally, achieving new state-of-the-art (SOTA) results. We inspect
four model sizes (i.e., tiny, base, small, and medium) to evaluate the Whisper ASR for our math
learning usages with kids.



Table 2: NLU Model Selection Results in F1-scores (%) Evaluated on Home POC Data (10-fold CV)

NLU Model Intent Detection  Entity Extraction
StarSpace+SpaCy 92.83+0.28 97.14+0.21
DIET+SpaCy 94.40+0.08 98.45+0.11
DIET+BERT 97.37+£0.26 99.2940.01
DIET+RoBERTa 95.62+0.21 99.1740.11
DIET+DistilBERT 97.52+0.23 99.54+0.11
DIET+ConveRT 98.92+0.28 99.66£0.02
DIET+LaBSE 98.314+0.21 99.78+0.03
DIET+XLNet 95.114+0.22 98.4440.13
DIET+GPT-2 95.46+0.30 99.07+£0.27
DIET+DialoGPT 96.124+0.52 99.0040.11
DIET+MathBERT-base 94.671+0.25 98.15+0.20
DIET+MathBERT-custom 94.731+0.37 97.544+0.28
DIET+Math-aware-BERT 96.07+0.18 99.00+0.18
DIET+Math-aware-RoBERTa 94.31+0.19 98.81+0.20

Table 3: NLU Evaluation Results in F1-scores (%) for DIET+ConveRT Models Trained on Home
POC Data & Tested on Home Deployment Data

Intent Detection Entity Extraction
Activity POC  Deploy A POC  Deploy A
Intro (Meet & Greet) 99.92 9746  -246 9932 9755 -1.77
Warm-up Game 9891 9354 537 - - -
Training Game 98.48 9427 -421 9992 9991 -0.01
Learning Game 99.02 9437 465 9995 9950 -0.45
Closure (Dance) 98.91 98.82 -0.09 - - -
All Activities 98.92 9436 -456 99.66 99.42 -0.24

4 Experimental Results and Discussions

We train Intent and Entity Recognition models and cross-validate them on the Home POC data
to pick the best-performing NLU architecture. Table [2] summarizes the results of NLU model
selection experiments. Compared to StarSpace (baseline), we gain 2% F1 score for intents and
1% F1 for entities with multi-task DIET. We observe that incorporating DIET with BERT-family
of embeddings achieves higher F1 relative to GPT-family. We cannot reveal any benefits of math-
specific representations with DIET. Based on these results, we select DIET+ConveRT as our final
NLU architecture.

Next, we evaluate our NLU module on Home Deployment data collected at authentic homes over
12 sessions/kids. In Table 3] we observe overall F1% drops (A) of 4.56 for intents and 0.24 for
entities when our best DIET+ConveRT models are tested on Home Deployment data. These drops
are relatively lower than what we observed at school |Okur et al.|[2022b]]. We witness distributional
and utterance-length differences between POC and Deployment datasets. Real-world data would
always be noisier than anticipated as these utterances come from younger kids playing math games in
dynamic conditions.

To further improve the performance of our NLU models (trained on POC data) by leveraging
deployment data, we experiment with merging the two datasets for training and evaluating the
performance on individual deployment sessions via leave-one-out (LOO) CV. At each of the 12 runs
(for 12 sessions/kids), we merge the POC data with 11 sessions of deployment data for model training
and use the remaining session as a test set, then take the average of these runs. That would simulate
how combining POC with real-world deployment data can help us train more robust NLU models
on unseen data in future deployments. The overall Fl-scores reach 96.6% for intents (2.2% gain
from 94.4%) and 99.6% for entities (0.2% gain) with LOOCYV, which are promising for our future
deployments.



Table 4: ASR Model Results: Average Word Error Rates (WER) for Child Speech at Kid Space
Home Deployment Data

Raw Lowercase Remove Num2Word LC& LC&RP NW& LC&RP&

ASR Model Output (LC) Punct (RP) (NW) RP & NW Clean NW & Clean
Rockhopper 0.939 0.919 0.924 0.937 0.886 0.884 0.937 0.884
Google Cloud 0.829 0.798 0.775 0.763 0.695 0.602 0.763 0.602
Whisper-tiny 1.055 1.027 1.002 1.027 0.964 0.919 0.983 0.880
Whisper-base 1.042 1.020 0.971 0.985 0.946 0.856 0.622 0.500
Whisper-small 0.834 0.804 0.760 0.756 0.720 0.621 0.537 0.405
Whisper-medium  0.905 0.870 0.824 0.814 0.785 0.675 0.522 0.384

Table 5: SLU Pipeline Evaluation Results in Fl-scores (%) for ASR+NLU and VAD-Adjusted
ASR+NLU on Home Deployment Data

Intent Detection Entity Extraction
ASR Model F1  Adjusted-F1  F1  Adjusted-F1
Rockhopper 37.3 15.7 84.4 355
Google Cloud 79.1 40.3 97.0 494
Whisper-tiny 58.1 56.6 94.0 89.1
Whisper-base 64.9 60.3 95.9 91.0
Whisper-small 72.1 68.0 96.5 91.6
Whisper-medium  76.7 73.3 98.2 93.8

To inspect the ASR module, we evaluated various ASR engines on the same audio from Home
Deployment data. We compute the average WER for kids with each ASR engine to investigate
the most feasible solution. Table ] summarizes WER after pre-processing steps (e.g., lower casing
and punctuation removal) and domain-specific filters (e.g., num2word and cleaning). The cleaning
applied to Whisper output due to known issues like repeat loops and hallucinations [Radford et al.
[2022]. We observe 4-to-7% Whisper output are trash (e.g., long transcriptions with repetitions),
which hugely affect WER, yet these can be auto-filtered. Relatively high error rates can be attributed
to the characteristics of recordings (e.g., incidental voice and phrases), very short utterances to be
recognized (e.g., binary yes/no answers or stating numbers), and recognizing kids’ speech in ordinary
home environments. The results indicate that Whisper ASR performs better on kids, and we can
benefit from increasing the model size.

For SLU pipeline evaluation, we test our best-performing NLU models on noisy ASR output. Table 3]
presents the results achieved on Home Deployment data where the DIET+ConveRT models run on
varying ASR models output. Voice Activity Detection (VAD) is an integral part of ASR that detects
the presence of human speech. We realize that the VAD stage is filtering out many audio chunks
with actual kid speech. Thus, VAD-adjusted Fls are compared in Table[5] aligned with the WER
results, where NLU on Whisper performs relatively higher than Google and Rockhopper. Increasing
the model size from tiny to medium worth the trouble for Whisper. Yet, F1 drop is still huge when
VAD-ASR errors propagate into the SLU pipeline.

5 Conclusion

To increase the quality of early math education, we develop a multimodal dialogue system for play-
based learning, helping the kids gain basic math skills. We investigate a modular SLU pipeline with
cascading ASR and NLU modules, evaluated on our home deployment data with 12 kids. For NLU,
we experiment with numerous pretrained language representations on top of a multi-task architecture
for Intent and Entity Recognition. For ASR, we inspect the WER with several low-power, commercial,
or open-source solutions with varying model sizes to conclude that Whisper-medium outperforms
the rest on kids’ speech at authentic homes. Finally, we evaluate the SLU pipeline by testing our
best-performing NLU models on VAD-ASR output to observe the effects of cascaded errors due to
noisy speech recognition with kids in realistic settings. In the future, we consider fine-tuning Whisper
ASR acoustic models on kids’ speech and language models on domain-specific math data, as well as
exploring N-Best-ASR-Transformers (Ganesan et al.| [2021] to mitigate errors propagated in SLU.
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6 Appendices

6.1 Related Work

6.1.1 Conversational Al for Math Learning

With the ultimate goal of improving the quality of education, there has been a growing enthusiasm
for exploiting Al-based intelligent systems to boost students’ learning experiences [Jia et al.|[2020],
Zhai et al.| [2021], Baker| [2021]]. Among these, interactive frameworks that support guided play-
based learning spaces revealed significant advantages for math learning |Pires et al.|[2019], Sun et al.
[2021]], Richey et al.| [2021]], especially for building foundational math skills in early childhood
education Nrupatunga et al.|[2021]], Skene et al.|[2022]]. To attain this level of interactivity within
smart learning spaces, developing innovative educational applications by utilizing language-based
Al technologies is in growing demand [Taghipour and Ng|[2016], Lende and Raghuwanshi| [2016],
Raamadhurai et al.|[2019], |Cahill et al.| [2020], (Chan et al.|[2021]], Rathod et al.| [2022]. In particular,
designing conversational agents for intelligent tutoring is a compelling yet challenging area of
research, with several attempts presented so far [Winkler and Sollner| [2018]], Wambsganss et al.
[2020], [Winkler et al.|[2020], |Datta et al.| [2020], Okonkwo and Ade-Ibijola [2021]], Wollny et al.
[2021]], most of them focusing on language learning |Bibauw et al.| [2022], [Tyen et al.|[2022], Zhang
et al.|[2022].

In the math education context, earlier conversational math tutoring applications exist, such as SKOPE-
IT Nye et al.|[2018]], which is based on AutoTutor Graesser et al. [2005] and ALEKS [Falmagne et al.
[2013], and MathBot|Grossman et al.| [2019]. These are often text-based online systems following
strict rules in conversational graphs. Later, various studies emerged at the intersection of cutting-edge
Al techniques and math learning Mansouri et al.|[2019]],|[Huang et al.|[2021]],|Azerbayev et al.| [2022],
Uesato et al.|[2022]],|Yang et al.|[2022]. Among those, employing advanced language understanding
methods to assist math learning is relatively new |Peng et al.|[2021]], [Shen et al.|[2021]],|Loginova and
Benoit [2022]], Reusch et al.|[2022]. The majority of those recent work leans on exploring language
representations for math-related tasks such as mathematical reasoning, formula understanding, math
word problem-solving, knowledge tracing, and auto-grading, to name a few. Recently, TalkMoves
dataset |Suresh et al.|[2022a] was released with K-12 math lesson transcripts annotated for discursive
moves and dialogue acts to classify teacher talk moves in math classrooms Suresh et al.|[2022b].

For the conversational Al tasks, the latest large language models (LLMs) based chatbots, such
as BlenderBot [Shuster et al.| [2022]] and ChatGPT |OpenAl| [2022]], gained a lot of traction in the
education community [Tack and Piech! [[2022], [Kasneci et al.|[2023]], along with some concerns about
using generative models in tutoring Macina et al.|[2023]], (Cotton et al.|[2023]]. ChatGPT is a general-
purpose open-ended interaction agent trained on internet-scale data. It is an end-to-end dialogue
model without explicit NLU/Intent Recognizer or DM, which currently cannot fully comprehend the
multimodal context and proactively generate responses to nudge children in a guided manner without
distractions. Using these recent chatbots for math learning is still in the early stages because they are
known to miss basic mathematical abilities and carry reasoning flaws [Frieder et al.[[2023], revealing
a lack of common sense. Moreover, they are known to be susceptible to triggering inappropriate or
harmful responses and potentially perpetuate human biases since they are trained on internet-scale
data and require carefully-thought guardrails.

On the contrary, our unique application is a task-oriented math learning spoken dialogue system
designed to perform learning activities, following structured educational games to assist kids in
practicing basic math concepts at home. Our SDS does not require massive amounts of data to
understand kids and generate appropriate adaptive responses, and the lightweight models can run
locally on client machines. In addition, our solution is multimodal, intermixing the physical and
digital hybrid learning experience with audio-visual understanding, object recognition, segmentation,
tracking, and pose and gesture recognition.

6.1.2 Language Representations for SLU

Conventional pipeline-based dialogue systems with supervised learning are broadly favored when
initial domain-specific training data is scarce to bootstrap the task-oriented SDS for future data
collection Serban et al.|[2018]], Budzianowski et al.|[2018]], Mehri et al.|[2020]. Deep learning-based
modular dialogue frameworks and practical toolkits are prominent in academic and industrial set-

15



tings [Bocklisch et al.|[2017]], Burtsev et al.| [2018]], Reyes et al.|[2019]. For task-specific applications
with limited in-domain data, current SLU systems often use a cascade of two neural modules: (i)
ASR maps the input audio to text (i.e., transcript), and (ii) NLU predicts intent and slots/entities
from this transcript. Since our main focus in this work is investigating the SLU pipeline, we briefly
summarize the existing NLU and ASR solutions.

The NLU component processes input text, often detects intents, and extracts referred entities from
user utterances. For the mainstream NLU tasks of Intent Classification and Entity Recognition, jointly
trained multi-task models are proposed [Liu and Lane|[2016],|Zhang and Wang| [2016]], Goo et al.
[2018]] with hierarchical learning approaches |Wen et al.|[2018]], [Vanzo et al.[|[2019]]. Transformer
architecture [Vaswani et al.[[2017] is a game-changer for several downstream language tasks. With
Transformers, BERT Devlin et al.| [2019] is presented, which became one of the most pivotal
breakthroughs in language representations, achieving high performance in various tasks, including
NLU. Later, Dual Intent and Entity Transformer (DIET) architecture Bunk et al.| [2020] is invented as
a lightweight multi-task NLU model. On multi-domain NLU-Benchmark data[Liu et al.|[2021a], the
DIET model outperformed fine-tuning BERT for joint Intent and Entity Recognition.

For BERT-based autoencoding approaches, ROBERTa |Liu et al.| [2019] is presented as a robustly
optimized BERT model for sequence and token classification. The Hugging Face introduced a
smaller, lighter general-purpose language representation model called DistilBERT [Sanh et al.|[2019]
as the knowledge-distilled version of BERT. ConveRT Henderson et al.| [2020] is proposed as an
efficiently compact model to obtain pretrained sentence embeddings as conversational representations
for dialogue-specific tasks. LaBSE [Feng et al.| [2022] is a pretrained multilingual model producing
language-agnostic BERT sentence embeddings that achieve promising results in text classification.

The GPT family of autoregressive LLMs, such as GPT-2 Radford et al.|[2019] and GPT-3 [Brown
et al.|[2020], perform well at what they are pretrained for, i.e., text generation. GPT models can also
be adapted for NLU, supporting few-shot learning capabilities, and NLG in task-oriented dialogue
systems |[Madotto et al.| [2020], Liu et al.|[2021b]. XLNet Yang et al.|[2019] applies autoregressive
pretraining for representation learning that adopts Transformer-XL Dai et al.|[2019]] as a backbone
model and works well for language tasks with lengthy contexts. DialoGPT [Zhang et al.| [2020]]
extends GPT-2 as a large response generation model for multi-turn conversations trained on Reddit
discussions, whose representations can be exploited in dialogue tasks.

For language representations to be utilized in math-related tasks, MathBERT |Shen et al.|[2021] is
introduced as a math-specific BERT model pretrained on large math corpora. Later, Math-aware-
BERT and Math-aware-RoBERTa models |Reusch et al.| [2022]] are proposed based on BERT and
RoBERTa, pretrained on Math Stack Exchang

6.1.3 Speech Recognition with Kids

Speech recognition technology has been around for some time, and numerous ASR solutions are
available today, both commercial and open-source. Rockhopper ASR |[Stemmer et al.|[2017] is an
earlier low-power speech recognition engine with LSTM-based language models, where its acoustic
models are trained using an open-source Kaldi speech recognition toolkit/Povey et al.|[2011]]. Google
Cloud Speech-to-Texs a prominent commercial ASR service powered by advanced neural models
and designed for speech-dependant applications. Until recently, Google STT API was arguably the
leader in ASR services for recognition performance and language coverage. Franck Dernoncourt
[2018]] reported that Google ASR could reach a word error rate (WER) of 12.1% on LibriSpeech
clean dataset (28.8% on LibriSpeech other) |[Panayotov et al.|[2015] at that time, which is improved
drastically over time. Recently, Open Al released Whisper ASR |[Radford et al.[[2022] as a game-
changer speech recognizer. Whisper models are pretrained on a vast amount of labeled audio-
transcription data (i.e., 680k hours), unlike its predecessors (e.g., Wav2Vec 2.0 Baevski et al.| [2020]]
is trained on 60k hours of unlabeled audio). 117k hours of this data are multilingual, which makes
Whisper applicable to over 96 languages, including low-resourced ones. Whisper architecture follows
a standard Transformer-based encoder-decoder as many speech-related models Latif et al.| [2023]].
The Whisper-base model is reported to achieve 5.0% & 12.4% WER on LibriSpeech clean & other
datasets.

“https://math.stackexchange.com/
*https://cloud.google.com/speech-to-text/
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Although speech recognition systems are substantially improving to achieve human recognition
levels, problems still occur, especially in noisy environments, with users having accents and dialects
or underrepresented groups like kids. Child speech brings distinct challenges to ASR [Stemmer
et al.| [2003]], |Gerosa et al.| [2007]], Yeung and Alwan|[2018]], such as data scarcity and highly varied
acoustic, linguistic, physiological, developmental, and articulatory characteristics compared to adult
speech|Claus et al.| [2013]], Shivakumar and Georgiou| [2020], Bhardwaj et al.| [2022]. Thus, WER
for children’s voices is reported two-to-five times worse than for adults [Wu et al.|[2019], as the
younger the child, the poorer ASR performs. There exist efforts to mitigate these difficulties of
speech recognition with kids [Shivakumar et al.|[2014]], Duan and Chen|[2020], Booth et al.| [2020],
Kelly et al.|[2020], Rumberg et al.| [2021]], Yeung et al.|[2021]]. Few studies also focus on speech
technologies in educational settings [Reeder et al.|[2015]],|Blanchard et al.|[2015], Bai et al.| [2021],
2022], Dutta et al.|[2022], often for language acquisition, reading comprehension, and story-telling
activities.

6.2 Error Analysis

For NLU error analysis, Table [6] reveals utterance samples from our Home Deployment data with
misclassified intents obtained by the DIET+ConveRT models on manual/human transcripts. These
language understanding errors illustrate the potential pain points solely related to the NLU model
performances, as we are assuming perfect or human-level ASR here by feeding the manually
transcribed utterances into the NLU. Such intent prediction errors occur in real-world deployments
for many reasons. For example, authentic user utterances can have multiple intents (e.g., “Yeah. Can
we have some carrots?” starts with affirm and continues with out-of-scope). Some utterances can be
challenging due to subtle differences between intent classes (e.g., “Ah this is 70, 7.” is submitting
a verbal answer with state-number but can easily be mixed with still-counting too). Moreover, we
observe utterances having colors and “flowers” within out-of-scope (e.g., “Wow, that’s a lot of red
flowers.”), which can be confusing for the NLU models trained on relatively cleaner POC datasets.

For further error analysis on the SLU pipeline (ASR+NLU), Table[/|demonstrates Intent Recognition
error samples from Home Deployment data obtained on ASR output with several speech recognition
models we explored. These samples depict anticipated error propagation from speech recognition to
language understanding modules in the cascaded SLU approach.

Please refer to Table [§] for additional error analysis on ASR output from our home deployment
data. Here, we compare manually transcribed utterances (i.e., human transcripts) with the speech
recognition output (i.e., raw ASR transcripts) using five different ASR models that we investigated
in this study. These ASR errors demonstrate the challenges faced in the speech recognition model
performances on kids’ speech, which potentially would be propagated into the remaining modules in
the conventional task-oriented dialogue pipeline.

Table 6: NLU Error Analysis: Intent Recognition Error Samples from Home Deployment Data

Sample Kid Utterance Intent Prediction
Pepper. state-name answer-valid
Wow, that’s a lot of red flowers. out-of-scope  answer-flowers
None. state-number deny
Nothing. state-number deny
Yeah. Can we have some carrots? affirm out-of-scope
Okay, Do your magic. affirm out-of-scope
Maybe tomorrow. affirm out-of-scope
He’s a bear. out-of-scope answer-valid
I like the idea of a bear out-of-scope answer-valid
Oh, 46?7 Okay. still-counting  state-number
94. Okay. still-counting  state-number
Now we have mountains. out-of-scope answer-valid
A pond? out-of-scope answer-valid
Sorry, I didn’t understand it. Uh, five tens.  state-number  still-counting
Ah this is 70, 7. state-number  still-counting
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Table 7: SLU Pipeline (ASR+NLU): Intent Recognition Error Samples from Home Deployment Data

Human Transcript ASR Output ASR Model Intent Prediction
Six. thanks Rockhopper state-number thank
fifteen if he Rockhopper state-number  out-of-scope
fifteen Mickey Google Cloud state-number state-name
Five. bye Google Cloud state-number goodbye
Blue. Blair. Whisper-base state-color state-name
twenty Plenty. Whisper-base state-number  had-fun-a-lot
A lot. Oh, la. Whisper-base had-fun-a-lot  out-of-scope
A lot. Oh, wow. Whisper-small had-fun-a-lot  out-of-scope
Two. you Whisper-small state-number  out-of-scope
Four. I’m going to see this floor. ~ Whisper-small state-number  out-of-scope
twenty Swamy? Whisper-medium  state-number state-name
Eight. E. Whisper-medium  state-number  out-of-scope

Table 8: ASR Error Samples from Home Deployment Data

Human Transcript  Rockhopper Google Cloud  Whisper-base Whisper-small Whisper-medium

Atticus. - - Yeah, that’s cute. I have a kiss. Now I have to kiss.
I am Genevieve. i’m twenty-two I’'m going to be I'm Kennedy. I’'m Genevieve. I’'m Genevieve.
Red. rab - Ralph. Red. Red.
Blue. lil blue Blair. Blue. Blue.
Yes, laughs yes Yes? Yes? Yes?
Roses. itis roses Okay. Okay focus
Zero. you know no No. No, no. No.
four. you swore - forward. Over. Over.
five. - bye Bye. Bye. Bye.
eight all - Thank you. Bye. Oh
forty eight wall e 48 48 48 48
forty nine already 49 49 49 49
fifty one if you want 51 51 51 51
seventy four stopping before 74 74 74 74
Maybe tomorrow. novarro tomorrow I need some water, I'm going to leave I'm leaving tomorrow.
though. it tomorrow.
Flowers, flowers in lean forward Greenhouse In forward, in I think forward, In the green house.
the greenhouse? phelps hours forward, in the both flowers and
than we green house. the greenhouse.
There are seventeen, seventeen 17+17-27 There are 17 and There are 17 and What is the maximum
and seventeen minus  seventeen 17 minus 10 17 minus 10 number of children in the
ten equals seven. rooms equals 7. equals 7. world? Um... There are 17

and 17 minus 10 equals 7.

We may attribute various factors to these speech recognition errors, often related to our deployment
data characteristics. Incidental voices and phrases constitute a good chunk of the overall home
deployment data, along with very short utterances to be recognized (e.g., stating names, colors,
types of flowers, numbers, and binary answers with one-or-two words), plus the remaining known
challenges present with recognizing kids’ speech in noisy real-world environments.

6.3 Limitations

By building this task-specific dialogue system for kids, we aim to increase the overall quality of
basic math education and learning at-home experiences for younger children. In our previous school
deployments, the overall cost of the whole school/classroom setup, including the wall/ceiling-mounted
projector, 3D/RGB-D cameras, LiDAR sensor, wireless lavalier microphones, servers, etc., can be
considered as a limitation for public schools and disadvantaged populations. When we shifted our
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focus to home learning usages after the COVID-19 pandemic, we simplified the overall setup for
1:1 learning with a PC laptop with a built-in camera, a depth camera on a tripod, a lapel mic, and a
playmat with cubes and sticks. However, even this minimal instrumentation suitable for home setup
can be a limitation for kids with lower socioeconomic status. Moreover, the dataset size of our initial
home deployment data collected from 12 kids in 12 sessions is relatively small, with around 12 hours
of audio data manually transcribed and annotated. Collecting multimodal data at authentic homes
of individual kids within our target age group (e.g., 5-to-8 years old) and labor-intensive labeling
process is challenging and costly [Sahay et al.|[2021]]. To overcome these data scarcity limitations
and develop dialogue systems for kids with such small-data regimes, we had to rely on transfer
learning approaches as much as possible. However, the dataset sizes affect the generalizability of
our explorations, the reliability of some results, and ultimately the robustness of our multimodal
dialogue system for deployments with kids in the real world. We aim to collect more deployment
data (both at school and home) to try to mitigate the known data scarcity issues and strengthen our
investigation results to build a more robust system. Please note that although our dialogue system and
data are constructed for English-language, it can be adapted easily to other languages by exploiting
the available multilingual resources for NLU (e.g., pretrained non-English language representations)
and ASR (e.g., Whisper supports both English-only and multilingual ASR).

6.4 Ethics Statement

Prior to our initial research deployments at home, a meticulous process of Privacy Impact Assessment
is pursued. The legal approval processes are completed to operate our research with educators,
parents, and the kids. Individual participants and parties involved have signed the relevant consent
forms in advance, which inform essential details about our research studies. The intentions and
procedures and how the participant data will be collected and utilized to facilitate our research are
explained in writing in these required consent forms. Our collaborators comply with stricter data
privacy policies as well.

The multimodal data we collected for research purposes during our home deployment sessions include
the video streams from the built-in laptop and depth cameras, audio streams from built-in and lapel
mics, all relevant system and interaction logs with the users, plus the UX research data such as
interviews with the parents and children prior/after the sessions. To address privacy concerns due to
the sensitive nature of this data involving kids, we comply with rigorous data privacy and security
policies to prevent any attacks or information leakage.

Our application area, education, is also highly critical to be preserved from any uncertainties and
forms of biases. To increase our control over the generated agent responses to kids, currently, we
are exploiting template-based or canned responses at the NLG module of our SDS pipeline. When
the multimodal DM module predicts the verbal response types in the form of agent actions, the
NLG retrieves these pre-defined agent response templates. Creating variety in the final response
text has been ensured by preparing multiple templates for each response type, usually with 3-to-6
variations. Among these variations in response templates, a final response text is picked randomly
at run-time. Note that each response text is carefully designed by the UX experts and vetted by
educators for age and grade appropriateness in advance. Employing this version of the template-based
response approach makes the overall system more reliable and consistent, which is crucial for our
application domain. These pre-defined templates would also serve as a guardrail to prevent harmful
or inappropriate responses to children and mitigate potential bias issues.
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