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Abstract

We present LLEMMA, a large language model for mathematics. We continue
pretraining Code Llama on Proof-Pile-2, a mixture of scientific papers, web data
containing mathematics, and mathematical code, yielding LLEMMA. On the MATH
benchmark LLEMMA outperforms all known openly released models, as well as the
unreleased Minerva model suite on an equi-parameter basis. Moreover, LLEMMA
is capable of tool use and formal theorem proving without any finetuning. We
openly release all artifacts, including 7 billion and 34 billion parameter models, the
Proof-Pile-2, and code to replicate our experiments.1

1 Introduction

We present an open-source recipe for adapting a language model to mathematics through continued
pretraining (Lewkowycz et al., 2022; Rozière et al., 2023) on the Proof-Pile-2, a diverse mixture of
math-related text and code. Applying the recipe to Code Llama (Rozière et al., 2023) yields LLEMMA:
7 billion and 34 billion parameter base language models with substantially improved mathematical
capabilities.

Specifically, our contributions are as follows:

1. We train the LLEMMA models: 7B and 34B parameter language models specialized for mathemat-
ics. The LLEMMA models are initialized with Code Llama (Rozière et al., 2023) weights, then
further trained on the Proof-Pile-2, a new mixture of scientific papers, mathematics web pages
(ope, 2023), and mathematical code comprising 53B unique tokens.

2. We evaluate LLEMMA on a standard suite of mathematical reasoning benchmarks. On the MATH
benchmark (Hendrycks et al., 2021a), LLEMMA outperforms all known open-access language
1https://github.com/EleutherAI/math-lm
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models and is more performant than the unreleased Minerva model (Lewkowycz et al., 2022)
per-parameter and per FLOP of math-specific training.

3. We demonstrate that LLEMMA is capable of using computational tools to solve mathematical
problems, namely, calculators, computer algebra systems, and formal theorem provers.

4. Unlike prior mathematics language models such as Minerva (Lewkowycz et al., 2022), the
LLEMMA model is open access and we open source our training data and code. This allows
LLEMMA to serve as a platform for future research in mathematical reasoning.

Our work builds on Minerva, a suite of PaLM models whose pretraining was continued on mathemat-
ical text (Lewkowycz et al., 2022), but differs in several ways: (1) LLEMMA’s training and evaluation
covers a wider range of data and tasks, notably code data (e.g., the AlgebraicStack), tool use, and
formal mathematics; (2) our work only depends on publicly accessible tools and data; (3) we provide
new analyses related to the continued training data mixture, memorization, and additional supervised
finetuning; (4) we make all artifacts publicly available for further research and use.

2 Approach

LLEMMA models are 7 billion and 34 billion parameter language models specialized for mathematics.
Our approach is to continue pretraining Code Llama (Rozière et al., 2023) on Proof-Pile-2.

2.1 Data: Proof-Pile-2

We form Proof-Pile-2, a 53B-token dataset of mathematical text. The Proof-Pile-2 contains scientific
papers via the RedPajama arXiv subset (Computer, 2023), web scrape data via OpenWebMath (ope,
2023), and code data via the newly-constructed AlgebraicStack. See Appendix A.1 for further details
on AlgebraicStack.

2.2 Model and Training

Each model is initialized from Code Llama (Rozière et al., 2023). Code Llama models are decoder-
only transformer language models initialized from Llama 2 (Touvron et al., 2023) and further trained
on 500B tokens of code. We continue training the Code Llama models on Proof-Pile-2 using a
standard autoregressive language modeling objective. We train the 7B model for 200B tokens, and the
34B model for 50B tokens. For a copmlete discussion of training hyperparameters, see Appendix E.

3 Evaluation

Our goal is to evaluate LLEMMA as a base model for mathematical text. To this end, we compare
LLEMMA models using few-shot evaluation (Brown et al., 2020), and primarily focus on state-of-
the-art models that have not been finetuned on supervised examples for the task. First, we evaluate
the model’s ability to solve mathematics problems using chain of thought reasoning (Wei et al.,
2023) and majority voting (Wang et al., 2023). Our evaluations include MATH (Hendrycks et al.,
2021b) and GSM8k (Cobbe et al., 2021), the de-facto standard benchmarks for evaluating quantitative
reasoning in language models (Lewkowycz et al., 2022). Second, we explore few-shot tool use
and formal theorem proving. Third, we study the effects of memorization and the data mixture.
Appendix K contains a preliminary study of supervised finetuning with LLEMMA. Furthermore, in
Appendix G we study the ability LLEMMA to leverage computational tools. In Appendix H we study
how memorization may have influenced evaluation scores. Finally, in subsection H.1 we run ablations
on the data mixture.

3.1 Chain-of-thought mathematical problem solving

We evaluate on a suite of tasks, including MATH (Hendrycks et al., 2021a) and (Cobbe et al.,
2021), that involve generating self-contained text solutions to problems expressed in LATEX or natural
language, without using external tools (Lewkowycz et al., 2022). For a full description of this suite
see Appendix F. For a qualitative example of a model output, see Figure 4.
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We compare with Minerva (Lewkowycz et al., 2022), which continued pretraining the PaLM language
model on a dataset of technical content; Code Llama, the initialization of LLEMMA’s continued
pretraining; and Llama 2, the initialization of Code Llama’s continued pretraining on code. For open
access models, we report scores computed using our evaluation suite, which is implemented as a
fork of the Language Model Evaluation Harness (Gao et al., 2021). For Minerva models, we report
benchmark scores from Lewkowycz et al. (2022).

Results. LLEMMA’s continued pretraining on Proof-Pile-2 improves few-shot performance on the
four mathematical benchmarks. LLEMMA improves over Code Llama by 20 percentage points on
GSM8k and 13 points on MATH, and outperforms the proprietary Minerva model. Our approach
also outperforms all open-weights language models at the time of writing. We conclude that contin-
ued pretraining on Proof-Pile-2 is effective for improving a pretrained model’s ability to perform
mathematical problem solving.

LLEMMA is pretrained on a diverse distribution of mathematics-related data, and is not tuned for a
particular task. Therefore, we expect that LLEMMA can adapt to many other tasks via task-specific
finetuning and few-shot prompting.

GSM8k OCW MMLU-STEM SAT MATH
Llama 2 7B 11.8% 3.7% 29.9% 25.0% 3.2%
Code Llama 7B 10.5% 4.4% 25.1% 9.4% 4.5%
Minerva 8B 16.2% 7.7% 35.6% - 14.1%
LLEMMA 7B 36.4% 7.7% 37.7% 53.1% 18.0%

Code Llama 34B 29.6% 7.0% 40.5% 40.6% 12.2%
LLEMMA 34B 51.5% 11.8% 49.0% 71.9% 25.0%
Minerva 62B 52.4% 12.0% 53.9% - 27.6%
Minerva 540B 58.8% 17.6% 63.9% - 33.6%

Table 1: Results on our five chain-of-thought reasoning tasks with samples generated via greedy
decoding. Minerva results are quoted from Lewkowycz et al. (2022). Note that CodeLlama 7B
performs worse than random guessing (25%) on MMLU and SAT, largely due to failing to conclude
its chain of thought with a valid answer.

GSM8k OCW MMLU-STEM SAT MATH
maj@k maj@k maj@k maj@k maj@k

Minerva 8B 28.4% 12.5% 43.4% - 25.4%
LLEMMA 7B 54.0% 14.3% 49.9% 78.1% 33.5%
LLEMMA 34B 69.3% 18.4% 59.7% 81.3% 43.1%

Minerva 62B 68.5% 23.5% 63.5% - 43.4%
Minerva 540B 78.5% 30.8% 75.0% - 50.3%

Table 2: Majority voting results for LLEMMA and Minerva. Minerva results are quoted from
Lewkowycz et al. (2022). Voting is done with k = 256 for MATH, k = 100 for GSM8k and OCW,
and k = 16 for MMLU-STEM and SAT. We sample with temperature T = 0.6 for k = 256 and
k = 100 and T = 0.3 for k = 16, and use nucleus sampling with p = 0.95 (Holtzman et al., 2020).
Due to compute constraints, we do not calculate majority voting scores for Llama 2 and Code Llama.

3.2 Formal mathematics

Interactive proof assistants such as Lean (de Moura et al., 2015), Isabelle (Wenzel et al., 2008),
and Coq (Paulin-Mohring, 1989a,b) express mathematics in programming languages that allow for
verification. These languages are data scarce compared to mainstream languages, especially in
the context of pretraining. For instance, the Stack dataset used to pretrain language models in the
BigCode project (Allal et al., 2023) has over 700 gigabytes of Python, compared to 322 megabytes of
Lean. Proof assistants also provide information that is not present in raw source code, such as proof
states that contain information about each step of a proof.
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Proof-Pile-2’s AlgebraicStack contains over 1.5 billion tokens of formal mathematics data, including
proof states extracted from Lean and Isabelle formalizations. While a full investigation of formal
math is outside the scope of this paper, we evaluate LLEMMA few-shot on two tasks:

• Informal-to-formal proving (Jiang et al., 2023), the task of generating a formal proof, given a
formal statement, an informal LATEX statement, and an informal LATEX proof. The formal proof is
checked by the proof assistant. We use the Isabelle proof assistant and evaluate on miniF2F (Zheng
et al., 2021), a benchmark consisting of problem statements from Olympiads and undergraduate
coursework. For the prompt, we use 11 (formal statement, informal statement, informal proof,
formal proof) examples from Jiang et al. (2023), selecting 7 examples for number theory problems,
and 6 examples for all others. We generate a single proof with greedy decoding.

• Formal-to-formal proving (e.g., Polu & Sutskever (2020)), the task of proving a formal statement
by generating a sequence of proof steps (tactics). At each step, the input is a state xt given by the
proof assistant, and the language model’s task is to generate a proof step yt (a sequence of code).
The proof step is checked by the proof assistant, yielding a new state xt+1 or an error message.
The process continues, stopping if a proof is completed or a timeout is reached. We prompt the
model using three (xt, yt) examples. We evaluate on miniF2F (Zheng et al., 2021) using the Lean
4 proof assistant, and use a standard best first search. See Appendix C for more details.

Results. As seen in Table 3, LLEMMA’s continued pretraining on Proof-Pile-2 improved few-shot
performance on the two formal theorem proving tasks.

Method Informal-to-formal
miniF2F-valid miniF2F-test

Sledgehammer 14.72% 20.49%
Code Llama 7b 16.31% 17.62%
Code Llama 34b 18.45% 18.03%

LLEMMA-7b 20.60% 22.13%
LLEMMA-34b 21.03% 21.31%

Method Formal-to-formal
Search miniF2F-test

ReProver* 1×64 26.50%
Code Llama 7b 1×32 20.49%
Code Llama 34b 1×32 22.13%

LLEMMA-7b 1×32 26.23%
LLEMMA-34b 1×32 25.82%

Table 3: Formal theorem proving tasks. Left: Informal-to-formal proving in Isabelle, showing the
percentage of proven theorems with greedy decoding. Right: Formal-to-formal proving in Lean,
showing the percentage of proven theorems with the given number of attempts × generations-per-
iteration of best first search, and a 10-minute timeout. Sledgehammer (Paulson & Nipkow, 2023) is
built-in Isabelle automation and ReProver (Yang et al., 2023) is a recent supervised model. ∗uses
Lean 3.

On informal-to-formal proving, LLEMMA-7b closes 22.1% of the theorems, improving upon its
Code Llama initialization and the Sledgehammer prover. The theorems that LLEMMA proves are
often complementary to those proved with Sledgehammer: taking the union of Sledgehammer and
LLEMMA proofs results in 26 new validation proofs (a 11 percentage-point increase), and 17 new
test proofs (a 7 point increase); see Appendix Table 11. Prior to our work, the only demonstration of
few-shot proof autoformalization used the proprietary Codex model (Jiang et al., 2023).

On Lean 4 formal-to-formal proving, LLEMMA-7b improves upon its Code Llama initialization, and
performs similar to ReProver (Yang et al., 2023), a retrieval-augmented language model finetuned for
tactic prediction. LLEMMA adapts to the task using a 3 example prompt, which to our knowledge is
the first demonstration of few-shot tactic prediction for theorem proving.

4 Related Work

Language models for mathematics. Lewkowycz et al. (2022) trained large language models for
mathematics tasks. Applying large language models to problems in mathematics is an active subfield
of machine learning, including benchmarking mathematical knowledge and reasoning at varying
levels (Hendrycks et al., 2021b; Zheng et al., 2021; Welleck et al., 2022; Azerbayev et al., 2023).
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A number of recent works focus on supervised finetuning on specific task formats (e.g.,Yu et al.
(2023); Yue et al. (2023)). Such work is orthogonal and complementary to ours, as improved base
model substantially increased finetuned performance (see Appendix K).

Language models for formal mathematics. An ongoing line of work explores integrating language
models with interactive theorem provers (Polu & Sutskever, 2020; Wu et al., 2022; Jiang et al., 2023;
Welleck & Saha, 2023; Polu & Sutskever, 2020; Jiang et al., 2021, 2022; Han et al., 2022; Polu et al.,
2022; Lample et al., 2022; Yang et al., 2023; First et al., 2023; Jiang et al., 2023). Our work provides
a demonstration of few-shot proof autoformalization and tactic prediction, a large collection of formal
mathematics data, along with an open access model for further exploring these directions.

5 Conclusion

We introduce LLEMMA and Proof-Pile-2, a novel base model and corpus for language modeling of
mathematics. Our models, dataset, and code are openly available. We have shown that LLEMMA
achieves state-of-the-art results for open-weights models on mathematical problem solving bench-
marks, shown capabilities of using external tools via Python code, and demonstrated few-shot tactic
prediction for theorem proving. We hope that LLEMMA and Proof-Pile-2 will be a useful base for
future work on understanding language model generalization and dataset composition, investigating
the limits of domain-specific language models, using language models as tools for mathematicians,
and improving the mathematical capabilities of language models.
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Data source Tokens Weight

Proof-Pile-2 53B –
Code (AlgebraicStack) 10B 1.00
Web (OpenWebMath) 14B 4.00
Papers (ArXiv) 29B 2.00

General code (RedPajama) 59B 0.22
General language (Pile) 300B 0.15

Table 4: Proof-Pile-2 data sources (top), general language and code data included during training
(bottom), and the mixture weights of each component during training.

Language AlgebraicStack tokens
Agda 35.2 M
C 25.1 M
C++ 954.1 M
Coq 281.9 M
Fortran 724.9 M
GAP 3.6 M
Haskell 9.1 M
Idris 10.9 M
Isabelle 1089.7 M
Julia 531.0 M
Jupyter 199.1 M
Lean 285.6 M
Maple 2.0 M
Matlab 65.8 M
Python 6098.8 M
R 71.3 M
Tex 567.7 M

Total 10955.7 M

Table 5: Tokens in AlgebraicStack, computed with the Llama tokenizer.

A Data: Proof-Pile-2

A.1 Mathematical code: AlgebraicStack

AlgebraicStack contains over 10B tokens of code related to mathematics. We describe its sources,
filtering, and content below. Table 5 shows the number of tokens per language in AlgebraicStack.

Model Adaptation tokens Open

Minerva-8b 164B ✗
Minerva-62b 109B ✗

LLEMMA-7b (ours) 200B ✓
LLEMMA-34b (ours) 50B ✓

Dataset Tokens Open

Minerva Dataset 38.5B ✗

Proof-Pile-2 (ours) 53B ✓
Code (AlgebraicStack) 10B ✓
OpenWebMath (ope, 2023)) 14B ✓
ArXiv (Computer, 2023)) 29B ✓

Figure 1: Comparison of LLEMMA and Minerva training

A.1.1 Composition

Scientific papers. We use the ArXiv subset of RedPajama (Computer, 2023), an open-access
reproduction of the LLaMA training dataset. The ArXiv subset contains 29B tokens.

Web data. We use OpenWebMath (ope, 2023), a 14B-token dataset of high-quality web pages
filtered for mathematical content. OpenWebMath filters CommonCrawl web pages based on math-
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related keywords and a classifier-based math score, preserves mathematical formatting (e.g., LATEX,
AsciiMath), and includes additional quality filters (e.g., perplexity, domain, length) and near-
deduplication. Refer to ope (2023) for a full description of OpenWebMath.

Code. Computational tools such as numerical simulations, computer algebra systems, and formal
theorem provers are of ever increasing importance to mathematicians (Avigad, 2018). Motivated by
this fact, we create AlgebraicStack, a 10B-token dataset of source code from 17 languages, spanning
numerical, symbolic, and formal math. The dataset consists of filtered code from the Stack (Kocetkov
et al., 2022), public GitHub repositories, and formal proofstep data. Table 5 shows the number of
tokens by language in AlgebraicStack.

General natural language and code data. Following Lewkowycz et al. (2022), our training
mixture consists of a small amount of general domain data, which functions as a form of regularization.
Since the pretraining dataset for LLaMA 2 is undisclosed, we use the Pile (Gao et al., 2020; Biderman
et al., 2022) as a surrogate training dataset.2 We set 95% of our training mixture to be the Proof-Pile-
2, 2% to be from the Pile (with ArXiv removed, as it is separately in Proof-Pile-2), and 3% to be the
GitHub subset of RedPajama (Computer, 2023).

A.1.2 GitHub code

The following programming languages were either barely present in the Stack or consisted of largely
incorrect filetypes, so we downloaded data for these languages directly via the Github Python API.

• Coq : We filter for files with the .v extension, and include Coq via including files that
match a heuristic filter for the keywords "Theorem", "Proof", "Qed", "Inductive",
"Definition", "Fixpoint" and exclude Verilog files via the keyword blacklist "pragma",
"endmodule", "posedge", "negedge", "wire". We additionally exclude files noted as
automatically generated.

• Isabelle : We filter for files with the .thy extension and include files
matching the keyword whitelist "theorem ", "lemma ". We keep only
isabelle-prover/mirror-afp-devel and discard all other older copies of the
Archive of Formal Proofs. We further remove theorem statements and proofs that have a
theorem name in the PISA (Jiang et al., 2021) test set.

• Lean : We filter for files with the .lean extension, using the keyword whitelist "theorem
", "lemma ", "example ". We remove all dependency files, and in order to avoid known
benchmark contamination, we blacklist the ProofNet and MiniF2F repositories. We
further remove theorems or lemmas that share a theorem name with the LeanDojo val or test
sets.

• MATLAB : We filter for files with the .m extension, using the keyword whitelist "#import",
"interface", "implementation", "property", and blacklist C files via the keywords
"#include" and the regex r’ main\(.*{$’

We implemented a cutoff date for our Github API downloads, and used a cutoff date of April 1, 2023.

For all languages, unless otherwise stated, we additionally filtered out files with a filesize greater than
1048575 bytes or with a numerical density (ratio of digit characters to non-digit characters) of 0.5.
We additionally perform document-level exact deduplication by removing documents which contain
an overlapping 2048-character chunk as another document.

A.1.3 Lean proofsteps

We extract a dataset of (tactic state, next tactic) pairs from Mathlib 4 (mathlib Community, 2020)
using the lean-training-data (Morrison, 2023) tool. We use Mathlib 4 commit c779bd5,
which was created on August 20th 2023.

2Gupta et al. (2023) found that continued pretraining with slightly different datasets is non-problematic.
Previous papers (Belrose et al., 2023; Chen et al., 2023) have used the Pile as a stand-in for unreleased pretraining
datasets.
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A.1.4 Isabelle Proofsteps

We construct a dataset of Isabelle proofs, building upon the PISA dataset Jiang et al. (2021). Isabelle
Proofsteps comprises proofs from the Archive of Formal Proofs and Isabelle Standard Library, scraped
with PISA Jiang et al. (2021). Each entry in the dataset includes the theorem statement, the proof
states and the proof steps, separated by specific tags. To maintain the integrity of evaluations using
the PISA test set, we decontaminate Isabelle Proofsteps by removing theorems whose names overlap
with those in the PISA test set. Although this approach results in a strict filtering – removing more
than 10,000 theorems although there are only 3600 in the PISA test set – we consider it acceptable in
order to mitigate data contamination. After filtering, Isabelle Proofsteps contains 251,000 theorems.

A.1.5 Stack Filtering

We source the following programming languages from the Stack (Kocetkov et al., 2022) dataset,
and describe our filtering process and quality issues we chose to mitigate beyond our default quality
heuristics:

• Agda: Only standard filters applied.

• C : We include documents based on a keyword whitelist, namely: "#include <fftw.h>",
"#include <fftw3.h>", "#include <rfftw.h>", "#include <gsl", "#include <cblas.h>",
"#include <blas.h>", "#include <lapacke.h>", "#include <nlopt.h>", "#include
<petsc.h>".

• C++ : We include documents based on a keyword whitelist, namely: "#include
<adept_arrays.h>", "#include <adept.h>", "#include <alglib>, "#include <boost",
"#include <armadillo", "#include <blitz", "#include <Eigen", "#include <deal.II",
"#include <dlib", "#include <NTL", "#include <mtl".

• Fortran : Only standard filters applied.

• GAP : Only standard filters applied.

• Haskell : We filtered the data to only contain files with the following im-
ports: Numeric.LinearAlgebra, Numeric.SpecFunctions, Numeric.Vector, Statistics,
Data.Complex.

• Idris : Only standard filters applied.

• Julia : We filtered out mislabeled JSON lines files. We removed files larger than 10,000
characters long which both were not files containing tests and which had a lower numerical
density than 0.5, and otherwise ignored numerical density. We additionally only accepted
files within a specific keyword whitelist, to attempt to control relevance to scientific comput-
ing, namely: "LinearAlgebra", "DifferentialEquations", "Symbolics", "Distributions",
"DataFrames", "DynamicalSystems", "Turing", "Gen", "JuMP", "sqrt", "abs", "ze-
ros", "ones", "sin", "cos", "tan", "log", "exp", "integrate", "likelihood", "Matrix",
π, "pi", "rand", "grad".

• Jupyter : We found that many Jupyter notebook files were large due to containing long cell
outputs, such as base64 images, long tracebacks, or other extra JSON cell metadata. We use
nbconvert to convert notebooks to a markdown format, removing metadata.

• Maple : We filtered out files with a size greater than 100, 000 bytes, and found that some
files were XML. We filtered all files beginning with an XML declaration.

• Python : We filtered notebooks and JSON files out by excluding documents with beginning
"{" characters, and included only files importing from the following libraries: numpy,
scipy, sympy, sage, numba, numexpr. We chose not to incorporate files importing from
common deep learning frameworks because of low data diversity.

• R : We excluded all files beginning with an XML declaration. We additionally filtered out
all notebooks, and filtered all files containing MacOS "Resource Fork" files.

• Tex : We used a max file size of 10,000,000 bytes. We excluded tex files found in di-
rectories named "latex/" because these were often auto-generated files, and excluded
documents using gnuplot. We included only documents containing one of the keywords "
\chapter{", "\chapter*{", "\section{", "\section*{", "\subsection{", "\subsection*{",
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"\subsubsection{", "\subsubsection*{", "\paragraph{", "\subparagraph{", and ad-
ditionally only included documents identified as English by a classifier from the langid
package.

For all languages we used within the Stack, unless otherwise stated, we additionally filtered out files
with a filesize greater than 1048575 bytes or with a numerical density (ratio of digit characters to
non-digit characters) of 0.5.

We used v1.2 of the near-deduplicated Stack as a base for processing.

A.2 Papers: Arxiv

We use the entirety of ArXiv, as accessed by Computer (2023) in April 2023. For further information
on preprocessing applied to ArXiv, see Computer (2023).

A.3 Web: OpenWebMath

For the web portion of our training dataset, we use OpenWebMath (ope, 2023).

B Evaluation Harness

We implement a variety of math-related tasks and evaluation protocols into a public fork of the
Language Model Evaluation Harness (Gao et al., 2021). The Harness provides a model-agnostic
framework for standardized, reproducible evaluation of language models.

We add the following tasks for the evaluations in this paper:

• hendrycks_math_ppl: Perplexity evaluation on MATH (Hendrycks et al., 2021a)
sub-tasks.

• minif2f_isabelle: Proof autoformalization in Isabelle on the miniF2F benchmark
based on Jiang et al. (2023), with a Portal-to-Isabelle (Jiang et al., 2021) proof checker.

• minerva_math: The MATH benchmark with the prompt and Sympy evaluation from
Minerva (Lewkowycz et al., 2022).

• minerva-hendrycksTest: MMLU-STEM tasks following Lewkowycz et al. (2022).
• ocw_courses: The OCW Courses task from Lewkowycz et al. (2022).
• python_gsm8k: GSM8k with Python, based on Gao et al. (2022).
• sympy_math: MATH with Sympy evaluation.

We include a link to the implementations for these tasks, including full prompts, in our public
codebase.

C Evaluation: Experiment Details

C.1 Isabelle Informal-to-Formal Theorem Proving

We follow Jiang et al. (2023), allowing the model to issue a call to built-in Isabelle automation in the
output proof by generating sledgehammer. This calls Sledgehammer (Paulson & Nipkow, 2023)
and the list of heuristics listed in Jiang et al. (2023). Following Jiang et al. (2023), as a baseline we use
Sledgehammer and the heuristics executed at the beginning of the proof (referred to as Sledgehammer
in the main text for brevity). We use a 30-second timeout for Sledgehammer and implement proof
checking via Portal-to-Isabelle (Jiang et al., 2021). Refer to the implementation in the Evaluation
Harness for further details.

C.2 Lean Theorem Proving

Theorem proving via tactic prediction involves interacting with a proof assistant after each step of
a proof. Implementing these interactions within the evaluation harness is outside the scope of this
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Problem (MATH Number theory 185): When a number is divided by 5, the remainder is 3.
What is the remainder when twice the number is divided by 5? Show that it is 1.

Human-written informal proof: If our number is n, then n ≡ 3 (mod 5). This tells us that

2n = n+ n ≡ 3 + 3 ≡ 1 (mod 5).

The remainder is 1 when the number is divided by 5.

Informal-to-formal (Isabelle):
{Problem, human-written informal proof}

theorem mathd_numbertheory_185:
fixes n ::nat
assumes "n mod 5 = 3"
shows "(2 * n) mod 5 = 1"

proof -
have "2 * n = n + n" <ATP>
also have ". . .mod 5 =

(n mod 5 + n mod 5) mod 5" <ATP>
also have ". . .= (3 + 3) mod 5"

using assms <ATP>
also have ". . .= 1" <ATP>
finally show ?thesis <ATP>
qed

Formal-to-formal (Lean 4):
theorem mathd_numbertheory_185

(n : N) (h0 : n % 5 = 3)
: 2 * n % 5 = 1 := by

-- INPUT (step 1):
-- n: N
-- h0: n % 5 = 3
-- ⊢ 2 * n % 5 = 1
rw [mul_mod, h0]

-- INPUT (step 2):
-- n: N
-- h0: n % 5 = 3
-- ⊢ 2 % 5 * 3 % 5 = 1
simp only [h0, mul_one]

Figure 2: Example formal proofs from LLEMMA-7b. Left: The model is given a problem, informal
proof, and formal statement, following Jiang et al. (2023). It generates a formal proof (starting with
proof -) containing Isabelle code and calls to automation (shown as <ATP>). Right: The model is
given a proof state, visualized as a grey comment, and generates the subsequent step (e.g. rw [..).

work. Therefore, for the Lean theorem proving task we use a separate evaluation setup based on an
open-source implementation (Welleck, 2023).

Setup. We evaluate on miniF2F (Zheng et al., 2021), which consists of 488 formalized statements
from math competitions and undergraduate coursework. Given a formalized statement, the task is to
generate a formal proof that is checked by Lean.

We use best first search, commonly used for neural tactic prediction models (e.g., Polu & Sutskever
(2020)). Best first search is parameterized by the number of attempts (N), generated tactics
per iteration (S), and maximum iterations (T). We define the search budget to be the maximum
number of generated tactics, N × S × T . We set our search budget to N = 1, S = 32,
and T = 100, less than that of the baseline model. Following Yang et al. (2023), we gener-
ate tactics with beam search and use a 10 minute timeout. We adapt the proof search imple-
mentation from Welleck (2023), which uses LeanDojo v.1.1.2 (Yang et al., 2023) for interac-
tion. We use Lean 4 miniF2F, using https://github.com/rah4927/lean-dojo-mew commit
d00c776260c77de7e70125ef0cd119de6c0ff1de.

Prompt. We prompt the model with three (state, tactic) examples, shown in Figure 3. For concrete
examples of model outputs, see Figure 2.
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"""Given the Lean 4 tactic state, suggest a next tactic.
Here are some examples:

Tactic state:
---
α : Type u_1
r : α → α → Prop
inst1 : DecidableEq α
inst : IsIrrefl α r
⊢ CutExpand r ≤ InvImage (Finsupp.Lex (r fun x x_1 => x ̸= x_1)

fun x x_1 => x < x_1) ↑toFinsupp
---
Next tactic:
---
rintro s t ⟨u, a, hr, he⟩
---

Tactic state:
---
ι : Type u_1
I J : Box ι
x y : ι → R
I J : WithBot (Box ι)
⊢ ↑I = ↑J ↔ I = J
---
Next tactic:
---
simp only [Subset.antisymm_iff, ← le_antisymm_iff,

withBotCoe_subset_iff]
---

Tactic state:
---
m n : N
h : Nat.coprime m n
⊢ Nat.gcd m n = 1
---
Next tactic:
---
rw [← h.gcd_eq_one]
---

Tactic state:
---
%s
---
Next tactic:
---"""

Figure 3: Prompt for the Lean theorem proving experiments.
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D Datasheet

We provide a datasheet for Proof-Pile-2, following the framework in Gebru et al. (2021).

MOTIVATION

For what purpose was the dataset cre-
ated?

Proof-Pile-2 was created for the training
or finetuning of domain-specific large lan-
guage models for general mathematics
tasks.

Who created the dataset and on behalf of
which entity?

The dataset was created by the authors of
this paper for the purposes of this research
project.

Who funded the creation of the dataset? The creation of the dataset was funded
by the coauthors’ grants and employers.
[anonymized].

Any other comment?
COMPOSITION

What do the instances that comprise the
dataset represent?

Instances are text-only documents.

How many instances are there in total? We detail fine-grained token counts else-
where in this paper.

Does the dataset contain all possible in-
stances or is it a sample (not necessarily
random) of instances from a larger set?

Our dataset is filtered based on our assess-
ments of quality for the language modeling
task. More detail on methodology can be
found in Appendix A.

What data does each instance consist of? Each instance is a text-only document,
alongside metadata about its originating
split and filename or location.

Is there a label or target associated with
each instance?

No.

Is any information missing from individ-
ual instances?

Yes, we filter undesired noise, such as
base64-encoded images, from some doc-
uments.

Are relationships between individual in-
stances made explicit?

No.

Are there recommended data splits? Yes, we release a canonical train, validation,
and test split of the dataset, which we follow
in this work.

Are there any errors, sources of noise, or
redundancies in the dataset?

We make our best efforts to remove errors
or sources of noise, but our dataset will
naturally contain documents with errors or
noise, and may contain near-duplicate doc-
uments.

Is the dataset self-contained, or does it
link to or otherwise rely on external re-
sources?

The dataset is self-contained, but can also
be reconstructed based on external publicly
available data sources and datasets follow-
ing our instructions.

Does the dataset contain data that might
be considered confidential?

All documents in Proof-Pile-2 are publicly
available online.
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Does the dataset contain data that, if
viewed directly, might be offensive, in-
sulting, threatening, or might otherwise
cause anxiety?

We estimate toxic content to be less preva-
lent in our dataset than other more general
web-based datasets, due to its technical fo-
cus. However, it is likely to contain such
content.

COLLECTION

How was the data associated with each
instance acquired?

Data was largely sourced from existing pub-
lic subsets, such as the RedPajama dataset
(Computer, 2023), OpenWebMath dataset
(ope, 2023), and via filtering the Stack (Ko-
cetkov et al., 2022). Some data was col-
lected using the Github API.

What mechanisms or procedures were
used to collect the data?

See above.

If the dataset is a sample from a larger
set, what was the sampling strategy?

We release the entirety of the dataset fol-
lowing the application of our quality filters.
We randomly held out validation and test
splits from the dataset.

Who was involved in the data collec-
tion process and how were they compen-
sated?

The authors of this paper participated in lo-
cating, retrieving, and filtering the dataset.

Over what timeframe was the data col-
lected?

This data was collected in 2023, with a cut-
off date of April 2023 for all subsets with
the exception of our Lean proofstep data.

Were any ethical review processes con-
ducted?

No.

PREPROCESSING

Was any preprocessing/cleaning/labeling
of the data done?

Yes, the authors extensively filtered the
dataset subsets in keeping with our expec-
tations for high-quality language modeling
data in our domain. See Appendix A for
further detail on filtering steps taken.

Was the “raw” data saved in addition to
the preprocessed/cleaned/labeled data?

Raw data can be accessed via reuse of our
provided codebase.

Is the software that was used to prepro-
cess/clean/label the data available?

Yes. We release our codebase, which can
be used to reproduce our dataset and its
construction process, at anonymized.

USES

Has the dataset been used for any tasks
already?

Yes, this dataset has been used to train the
LLEMMA language models as a domain
adaptation and continued pretraining cor-
pus.

Is there a repository that links to any
or all papers or systems that use the
dataset?

No.

What (other) tasks could the dataset be
used for?

The dataset was specifically targeted as a
high quality language modeling corpus for
the mathematics domain, but may be useful
for general-purpose language modeling or
unforeseen other downstream uses.
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Is there anything about the composition
of the dataset or the way it was col-
lected and preprocessed/cleaned/labeled
that might impact future uses?

We filtered the dataset with the intent of
creating a model useful for mathematical
tasks with solely English text.

Are there tasks for which the dataset
should not be used?

The dataset should not be used with the
intent to cause harm or for models intended
for the purposes of harm.

DISTRIBUTION

Will the dataset be distributed to third
parties outside of the entity on behalf of
which the dataset was created?

We intend to make the dataset publicly
available for reproducibility, analysis, and
other further downstream uses.

How will the dataset will be distributed? We will provide code to replicate the
dataset, and plan to release it via the Hug-
gingface Hub.

When will the dataset be distributed? The dataset will be available immediately
upon publication.

Will the dataset be distributed under
a copyright or other intellectual prop-
erty (IP) license, and/or under applicable
terms of use (ToU)?

We do not relicense the dataset’s compo-
nents, and do not impose our own use re-
strictions.

Have any third parties imposed IP-based
or other restrictions on the data associ-
ated with the instances?

Not to our knowledge.

Do any export controls or other regula-
tory restrictions apply to the dataset or
to individual instances?

Not to our knowledge.

MAINTENANCE

Who will be supporting/hosting/main-
taining the dataset?

The dataset will be hosted on the Hugging-
Face Hub and able to be recreated via code
at anonymized. The dataset will not be
updated post-release.

How can the owner/curator/manager of
the dataset be contacted?

anonymized.

Is there an erratum? No.

Will the dataset be updated? No.

If others want to extend/augment/build
on/contribute to the dataset, is there a
mechanism for them to do so?

No.

Table 6: Datasheet for Proof-Pile-2, following the framework introduced by Gebru et al. (2021).
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E Training Hyperparameters

We train all models in bfloat16 mixed precision using the GPT-NeoX library (Andonian et al., 2023)
across 256 A100 40GB GPUs. We use Tensor Parallelism (Shoeybi et al., 2019) with a world size
of 2 for LLEMMA-7B , and a world size of 8 for LLEMMA-34B, alongside ZeRO Stage 1 sharded
optimizer states (Rajbhandari et al., 2020) across Data Parallel (Goyal et al., 2017) replicas. We use
Flash Attention 2 (Dao, 2023) to improve throughput and further reduce memory requirements.

LLEMMA 7B is trained for 42, 000 steps with a global batch size of 4 million tokens and a 4096 token
context length. This corresponds to roughly 23, 000 A100-hours. The learning rate is warmed up to
1 · 10−4 over 500 steps, then set to cosine decay to 1/30th of the maximum learning rate over 48, 000
steps. The reason for the discrepancy between the number of training steps and the scheduler length
is that we planned to train for 48, 000 steps, but encountered NaN losses after step 42, 000, likely
caused by unstable optimization or hardware failures (Elsen et al., 2023).

LLEMMA 34B is trained for 12, 000 steps with a global batch size of 4 million tokens and a 4096
context length. This corresponds to roughly 47, 000 A100-hours. The learning rate is warmed up to
5 · 10−5 over 500 steps, then decayed to 1/30th the peak learning rate.

Before training LLEMMA 7B, we contract the RoPE (Su et al., 2022) base period of the Code Llama
7B initialization from θ = 1, 000, 000 to θ = 10, 000. This is so that the long context finetuning
procedure described in Rozière et al. (2023) can be repeated on the trained LLEMMA 7B (we leave
actually doing so to future work). Due to compute constraints, we were unable to verify that training
LLEMMA 34B with a contracted RoPE base period did not come with a performance penalty, therefore
for that model we left θ = 1, 000, 000.

F Chain of Thought Evaluation Suite

Input:
Let f(r) =

∑2008
j=2

1
jr

= 1
2r

+ 1
3r

+ · · ·+ 1
2008r

. Find
∑∞

k=2 f(k).

LLEMMA 34B solution:
We have

∞∑
k=2

f(k) =

∞∑
k=2

2008∑
j=2

1

jk
=

2008∑
j=2

∞∑
k=2

1

jk
=

2008∑
j=2

1

j2
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k=0

1

jk
=

2008∑
j=2

1

j2
1

1− 1
j

=

2008∑
j=2

1

j(j − 1)
=

2008∑
j=2

(
1

j − 1
− 1

j

)

=

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·+

(
1

2007
− 1

2008

)
= 1− 1

2008

=
2007

2008
.

Final Answer: The final answer is 2007
2008

.

Figure 4: Example of a LLEMMA 34B solution to a MATH (Hendrycks et al., 2021a) problem. This
problem is tagged with difficulty level 5, the highest in MATH. The model was conditioned on the
4-shot prompt described in subsection 3.1, and the solution was produced by greedy decoding. Notice
that the model had to apply two nontrivial steps to solve this problem: (1) noticing that swapping the
order of summation simplifies the problem, and (2) noticing that the resulting sum telescopes.

• MATH (Hendrycks et al., 2021b), a dataset with 12.5k problems (5k evaluation) from high-school
math competitions. Given a problem statement, the model generates a LATEXsolution and an answer
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that must match a reference answer. We follow Lewkowycz et al. (2022), using their four-example
prompt and evaluating answers using Sympy equivalence.

• GSM8k (Cobbe et al., 2021), a dataset of middle-school level math word problems. We use the
8-shot prompt from Wei et al. (2023), as Lewkowycz et al. (2022) do not specify their evaluation
prompt or number of few-shot examples.

• OCWCourses (Lewkowycz et al., 2022), a collection of undergraduate-level STEM problems
harvested from MIT’s OpenCourseWare. We use the four-example prompt provided by (Lewkowycz
et al., 2022).

• MMLU-STEM (Hendrycks et al., 2021a), a subset of 18 out of 57 subjects in the MMLU
benchmark. We follow Lewkowycz et al. (2022) and use their provided four-example chain-of-
thought prompt.

• SAT, we create a dataset consisting of the 32 math questions that do not contain figures from the
May 2023 College Board SAT examination, which is after our model’s knowledge cutoff.

G Mathematical problem solving with tool use

We evaluate the model’s ability to solve problems given access to computational tools. We evaluate
the following:

• MATH+Python, the model is prompted to alternately describe a solution step in natural language,
then execute that step with code. The final answer is a program that executes to a numeric type or a
SymPy object. Our few-shot prompt includes examples that use built-in numeric operations, the
math module, and SymPy.

• GSM8k+Python, solving a GSM8k word problem by writing a Python program that executes to
the answer. We use the prompt from Gao et al. (2023).

GSM8k+Python MATH+Python
pass@1 pass@1

Code Llama 7B 27.1% 17.2%
LLEMMA 7B 40.1% 21.5%

Code Llama 34B 52.7% 23.5%
LLEMMA 34B 62.6% 27.1%

Table 7: Mathematical problem solving with tool use.

Results. As seen in Table 7, LLEMMA improves over Code Llama on both tasks. Its performance
on MATH and GSM8k with tools is also higher than its performance on these datasets without tools.

H Dataset overlap and memorization

Do test problems or solutions appear in the corpus? We check whether any 30-gram in a
test sequence (either an input problem or an output solution) occurs in any OpenWebMath or
AlgebraicStack document. If so, we say that a hit occurred between the sequence and the document.
Table 8 shows hits between sequences from MATH and documents from Proof-Pile-2. Using our
methodology, around 7% of MATH test problem statements and 0.6% of MATH test solutions have
hits. Note that our methodology gives a lower bound on the number of semantically equivalent
sequences (e.g., it does not account for alternative phrasing).

We manually inspected 100 uniformly sampled hits between a test problem statement and an Open-
WebMath document. 41 of the cases had no solution, which included websites with a list of problems,
discussions, or hints. 49 had an alternative solution to the MATH ground-truth solution, but with
the same answer. These include solutions that solve the problem differently than the ground-truth,
solutions with missing details, and discussions that include the answer. 9 cases had a missing or
incorrect answer, and 1 had the same solution as in the ground-truth. In summary, we find that
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solutions can appear in a corpus derived from web documents, particularly alternative solutions to
those in the evaluation set. We repeated our analysis with 20-gram hits and our findings were similar,
though with false positives; see Appendix Figure 5 for examples.

Problem Solution
Proof-Pile-2 Test Example Docs Example Docs

OpenWebMath MATH 348 664 34 43
AlgebraicStack MATH 3 3 0 0
OpenWebMath GSM8k 2 3 0 0
AlgebraicStack GSM8k 0 0 0 0

Same solution 1
Different solution, same answer 49
Different solution, different answer 9
No solution 41
Different problem 0

Table 8: Left: 30-gram hits between MATH test problems or solutions and Proof-Pile-2 documents.
Example and Docs are the numbers of unique test examples and Proof-Pile-2 documents with a hit.
Right: manual inspection of 100 hits between a problem statement and a Proof-Pile-2 document.

MATH Hit Nonhit # HitsLevel Accuracy Accuracy

Level 1 72.73 61.50 11
Level 2 35.71 40.18 28
Level 3 30.36 26.88 56
Level 4 14.89 16.61 94
Level 5 6.08 6.39 181

Table 9: LLEMMA-34b’s accuracy on hits
(a 30-gram overlap between a problem or
solution and a training sequence) and non-
hits by MATH difficulty level.

How do problems in the corpus impact perfor-
mance? Next, we evaluate LLEMMA-34b on the test
examples with a 30-gram hit, and the test examples
without a 30-gram hit. Table 9 shows the accuracy parti-
tioned by MATH difficulty level. The model’s accuracy
remains low on difficult problems (e.g., 6.08% on Level
5 problems with a hit, versus 6.39% on problems with-
out a hit), and we observe no clear relationship between
30-gram hits and accuracy across difficulty levels. We
conclude that a nontrivial match between a test example
and a training document did not imply that the model
generated a memorized correct answer. We repeated
the analysis with 20-gram hits, and with the 7b model,
and our findings were analogous. Figure 6 shows an
example.

Finally, we check 30-gram hits between LLEMMA’s MATH generations and OpenWebMath. There
were 13 hits, which occurred when the model generated a common sequence of numbers (e.g., a list
of Fibonacci numbers), plus one instance of factoring a polynomial. Appendix Figure 5 shows an
example. We find all of these observations worthy of further study. Using LLEMMA and Proof-Pile-2
to better understand data, memorization, and performance is an interesting future direction.

H.1 Impact of data mixture

When training a language model, it is common to upsample high-quality subsets of the training
data according to mixture weights (Brown et al., 2020; Gao et al., 2020; Biderman et al., 2023; Xie
et al., 2023). We select mixture weights by doing short training runs on several hand-picked mixture
weights, then choosing the one which minimizes perplexity on a set of high-quality held-out text (we
use the MATH training set). Table 10 shows the MATH training set perplexity of models trained
using different mixtures of arXiv to web to code. Based on these results, we trained LLEMMA with
a ratio of 2 : 4 : 1. Note that our methodology uses the MATH training set to determine a training
hyperparameter, though we expect that the effect is similar to that of related high-quality texts.

Mixture MATH training set perplexity

Overall Prealgebra Algebra Number
Theory

Counting &
Probability Geometry Intermediate

Algebra Precalculus

2:4:1 1.4782 1.4945 1.5150 1.5523 1.4745 1.5187 1.4393 1.3312
2:4:2 1.4821 1.4999 1.5190 1.5558 1.4772 1.5235 1.4426 1.3337
4:2:1 1.4871 1.5047 1.5240 1.5605 1.4811 1.5340 1.4466 1.3377
4:2:2 1.4893 1.5077 1.5271 1.5617 1.4825 1.5380 1.4474 1.3385
4:4:1 1.4868 1.5057 1.5253 1.5607 1.4821 1.5293 1.4456 1.3346
4:4:2 1.4850 1.5030 1.5228 1.5589 1.4795 1.5290 1.4443 1.3341

Table 10: MATH training set perplexity of models trained using different data mixtures. Each mixture
is represented by its arXiv:Web:Code ratio.
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Method Autoformalization pass@1
miniF2F-valid∗ miniF2F-test

Sledgehammer 14.72% 20.49%
Code Llama 7b 16.31% 17.62%
LLEMMA-7b 20.60% 22.13%

Code Llama 7b ∪ Sledgehammer 20.17% 25.00%
LLEMMA-7b ∪ Sledgehammer 25.97% 27.46%

Table 11: Isabelle autoformalization. ∗We exclude the 11 examples used in the few-shot prompts.
Pass@1 with greedy decoding.

I Additional Results

I.1 Proof autoformalization

Table 11 shows additional results on Isabelle proof autoformalization, including the union of theorems
closed by Sledgehammer and the given language model.

J Qualitative Examples

J.1 Dataset overlap

Figure 5 shows example false positives when checking n-gram overlap with OpenWebMath docu-
ments for various n.

Figure 6 shows an example OpenWebMath document that has 30-gram overlap with a MATH problem,
and LLEMMA-7b’s generated solution.

K Supervised Finetuning

A full exploration of finetuning applications for LLEMMA, such as instruction following (Ouyang
et al., 2022; Wei et al., 2022), dialogue modeling (Thoppilan et al., 2022; Touvron et al., 2023; Collins
et al., 2023), and reward modeling (Cobbe et al., 2021; Lightman et al., 2023) are outside the scope
of this work. However, to establish that LLEMMA retains its advantage over other open models when
finetuned, we conduct preliminary experiments finetuning LLEMMA-7B on MetaMathQA (Yu et al.,
2023), a supervised dataset targeted at the MATH and GSM8k benchmarks. Results are shown in
Table 12.

Initialization Finetune Dataset MATH GSM8k

Llama 2 7B WizardMath (Proprietary) 10.7% 54.9%
Llama 2 7B MetaMathQA 19.4% 66.4%

LLEMMA 7B MetaMathQA 25.2% 66.5%
Llama 2 70B WizardMath (Proprietary) 22.7% 81.6%
Llama 2 70B MetaMathQA 26.6% 82.3%

Table 12: Finetuning of various 7B base models on supervised mathematics datasets. All results
with a Llama 2 initialization are copied from the literature (Luo et al., 2023; Yu et al., 2023). The
LLEMMA 7B finetune is trained with identical hyperparameters to the models in Yu et al. (2023)

.
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OpenWebMath document
2D affine transformations can be better represented using 2 by 2 matrices, since they
are simply linear combinations of 2 variables. The advantage of this is that the matrices
are associative under multiplication Also, GPUs and modern toolkits are optimised to work
with this representation. As a result, a scale matrix is \begin{bmatrix} s_x & 0 \\ 0 &
s_y \end{bmatrix}, and a rotation matrix is \begin{bmatrix} \cos \theta & -\sin \theta \\
\sin \theta & \cos \theta \end{bmatrix}.

A translation matrix is simply \begin{bmatrix} 1 & \frac{t_x}{y} \\ \frac{t_y}{x} & 1 ...

MATH problem

A rotation centered at the origin takes
(
13
0

)
to

(
5
−12

)
. Which vector does the rotation take

(
0
1

)
to?

MATH solution
The rotation matrix must be of the form

(
cos θ − sin θ
sin θ cos θ

)
. Thus,...

Hit
\cos \theta & -\sin \theta \\ \sin \theta & \cos

OpenWebMath document
# Basic Probability

A number is selected at random from 1 through 100, inclusive. What is the probability
that the number is a divisor of 50? Express your answer as a common fraction.

Apr 24, 2019

There are a 100 integers between 1-100, inclusive. Since 50 is $$2*5^2$$, it has
$$(1+1)(1+2)=(2)(3)=6$$ factors. Thus, the answer is
$$\frac{6}{100}=\boxed{\frac{3}{50}}.$$

MATH problem
A number is selected at random from 1 through 100, inclusive. What is the probability that the number
is a perfect square?

Hit
A number is selected at random from 1 through 100, inclusive. What is the probability that the number
is a

OpenWebMath document
Fig. 2.

Use values of the most used medicinal plants in the Safi Province (Morocco).

It is also important to note that for the abovementioned medicinal plants, many other
folk uses have been reported in different regions of Morocco. Furthermore,
literature-based proof revealed that these species have proven a wide variety of
biological and pharmacological activities (Table 4, Ref. [14, 17, 19, 20, 21, 23,
24, 26, 28, 30, 31, 34, 35, 36, 38, 39, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,
76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96,
97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113,
114, 115, 116]), which may confirm the different popular applications of ...

Generated solution (LLEMMA 7b):
The first 100 positive integers are 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,
21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,
50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,
79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100. We can see that...

Figure 5: Data overlap: Example false positives using 10-gram match between MATH solutions and Open-
WebMath documents (top), 20-gram match between MATH problems and OpenWebMath documents (middle),
and 30-gram match between LLEMMA-7b’s generated solutions and OpenWebMath documents (bottom).

23



OpenWebMath document
A triangle is formed with edges along the line $y=\frac{2}{3}x+5$,
the $x$-axis, and the line $x=k$. If the area of the triangle is less than $20$,
find the sum of all possible integral values of $k$.

Feb 28, 2018

Look at the graph, here...two triangles are possible :
https://www.desmos.com/calculator/m6wnjpgldq
The height of the triangles at any point will be formed by

[ (2/3)x + 5 ]

And the bases will be [ x - (- 7.5)] = [ x + 7.5]
So....we want to solve this
(1/2) [ (2/3)x + 5 ] [ x + 7.5 ] = 20
[ (2/3)x + 5 ] [ x + 7.5] = 40
(2/3)x^2 + 5x + 5x + 37.5 = 0
(2/3)x^2 + 10x - 2.5 = 0

Using a little technology.....the max x value for the
triangle formed above the x axis will be = .246

And the min x value for the triangle formed below the x axis will be = -15.246

With the given boundaries, the integer sums of all possible x values of k giving
triangles with an area < 20 units^2 =

[ (-15) + (-14 ) + (-13) + ...+ ( -2) + ( - 1 ) + 0 ] =
- (15) (16) / 2 =
-120

Feb 28, 2018

MATH Problem: A triangle is formed with edges along the line y = 2
3
x+ 5, the x-axis, and the line

x = k. If the area of the triangle is less than 20, find the sum of all possible integral values of k.
Answer: -120

Generated solution (LLEMMA 7b):
The triangle has vertices (k, 0), (0, 5), and (k, 2

3
k + 5). The base of the triangle has length k, and the

height of the triangle has length 2
3
k + 5. The area of the triangle is therefore

A =
1

2
bh =

1

2
k(

2

3
k + 5) =

1

3
k2 +

5

2
k.

Since the area of the triangle is less than 20, we have

1

3
k2 +

5

2
k < 20⇒ 1

6
k2 +

5

4
k − 10 < 0.

This inequality is true if and only if 1
6
k2 + 5

4
k − 10 is positive. Since 1

6
k2 + 5

4
k − 10 is a quadratic

with positive leading coefficient, it is positive if and only if its vertex is less than 0. The vertex of
1
6
k2 + 5

4
k − 10 is (− 10

3
,− 125

18
). Since − 10

3
< 0, we have that 1

6
k2 + 5

4
k − 10 > 0 if and only if

k < − 10
3

. Therefore, the only possible integral values of k are k = 0, 1, 2, 3, 4. The sum of these
values is 10 . Final Answer: The final answer is 10.

Figure 6: Data overlap: Example OpenWebMath document that has a 30-gram overlap with the given MATH
problem, and LLEMMA-7b’s generated solution.
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