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Abstract

While some prompting strategies have been proposed to elicit reasoning in Large
Language Models (LLMs), numerical reasoning for machine reading comprehen-
sion remains a difficult challenge. We propose a neuro-symbolic approach that uses
in-context learning with LLMs to decompose complex questions into simpler ones
and symbolic learning methods to learn rules for recomposing partial answers. We
evaluate it on different numerical subsets of the DROP benchmark; results show
that it is competitive with DROP-specific SOTA models and significantly improves
results over pure LLM prompting methods. Our approach boasts data efficiency,
since it does not involve any additional training or fine-tuning. Additionally, the
neuro-symbolic approach facilitates robust numerical reasoning; the model is faith-
ful to the passage it has been presented, and provides interpretable and verifiable
reasoning traces.

1 Introduction

Numerical reasoning in Machine Reading Comprehension (MRC) is a challenging task; it involves
identifying the terms from a passage relevant to some complex question and reasoning about them.
This has been previously tackled with specialised architectures, some containing modules for each
reasoning type [3} [11, 15 [13], or with Reasoning Templates [1]]. These approaches incurred a
significant data overhead to train, where an auxiliary search identifies all possible paths to the answer,
and an engineering overhead to extend to more reasoning types than have been previously defined.

Recent advancements in Large Language Models (LLMs) gave rise to prompting strategies to
elicit reasoning, like Chain-of-Thought and Successive Prompting [[17, 16} [18} 4}, 9]. In all of these
approaches, it falls upon the LLM to generate the steps needed to reason about a question, and in
some, it also calculates the final answer. The quality of the results is heavily dependent on the family
of LLMs used and the number of parameters it contains. Furthermore, how to ground models to the
given passage and make its reasoning faithful to its contents is not obvious.

In this approach, we follow the line divide-and-conquer approaches [} 4, 18} (9] that break down
complex questions into simpler subquestions that are easier to answer with single-span reading
comprehension (RC) models. In contrast to previous approaches, we do not rely on templates or
LLMs for instructions on how to reason about the partial answers. Instead, we propose learning
symbolic rules that express the numerical reasoning needed to compute the final answer from partial
answers, given few-shot examples. We leverage in-context learning with LLMs to decompose
complex questions and symbolic learning methods (like ILASP [7]) to learn rules to recompose
partial answers. Figure|[T]illustrates this neuro-symbolic approach.

We evaluate our approach on different numerical subsets of the DROP discrete reasoning MRC
benchmark [3]]. Our results show that even without any special training or fine-tuning, it is competitive
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Figure 1: Overview of approach: After collecting few-shot examples for a test question, LLMs are
used to decompose the complex question into simpler single-span extraction questions, symbolic
learning is used to induce the rule needed to arrive at the final answer.

with DROP-specific models for most splits. Our results further show that this approach significantly
improves performance over pure LLM prompting methods, in addition to bridging the gap in
performance between smaller and larger LLMs.

By using LLMs to solve small concrete tasks, and lifting the reasoning to a symbolic module, like
ILASP, we can show the reasoning steps that are used to arrive at the final answer, and be sure that
the answer is indeed based on that. Symbolic learning also allows generalisation with little data. This
approach combines the complementary strengths of LLMs and symbolic learning.

2  Our Approach

At a high level, given a test question and passage, few-shot examples are selected from a small
annotated subset of training examples that contain question decompositions. These examples of
decompositions are then fed along with the test question to an LLM to be decomposed into simpler
subquestions, which can be fed to a single-span RC model to extract the partial answers. The few-shot
examples also form the basis for the positive examples fed to a Symbolic Learner to find a rule that
covers the operation used to reach the answer. The final answer for the test question is then calculated
using the learned rule and partial answers, as illustrated in Figure[I] The novelty of our approach
mainly lies in learning how to recompose partial answers using symbolic learning. No fine-tuning is
required for any component of this approach, where we opt to use off-the-shelf models; making it
generalisable, simple and cheap to implement.

Collecting few-shot examples In this work, we only need few-shot examples to tackle the complex
reasoning task. We build upon the small annotated subset provided by Successive Prompting [4],
which contains 300 examples from the DROP training set, with annotations of chain-of-thought
reasoning traces and question decompositions. These examples will be the basis from which we learn
how to decompose a complex test question and how to recompose partial answers. We explore two
approaches to select few-shot examples for each test question: the first is based on finding the nearest
neighbours of the complex test question in the embedding space of the annotated questions using
sentence embeddings [[12]], where the closest k annotated questions to a test question are retrieved
by querying an index Zg, which contains the annotated subset of questions. The second approach
defines a canonical set of examples from the annotated questions for each given type, and transforms
the task into type-prediction; which we do by prompting an Alpaca [14] 7B model given a question
and a single demonstration of each of the types: addition, subtraction and negation. Throughout this
work, we use three examples (k = 3) for few-shot learning.

Question decomposition Given the few-shot examples collected in the previous step, we construct
a textual prompt to decompose a question into simpler ones using the annotated decompositions of
these examples as demonstrations, appended with the complex test question at the end. With this
prompt, an LLM generates a completion that contains simpler subquestions for the test question.
This is analogous to the question decomposition step in the in-context learning setting of Successive
Prompting [4], Self-ask Prompting [9] and Least-to-Most Prompting [[18].

Single-span reading comprehension Once we have decomposed questions into simpler, single-
span extraction questions, we can use the subquestions to extract the appropriate terms for reasoning



from the passage. We opt to make use of a pre-trained off-the-shelf single-span extraction model; a
BERT-based model fine-tuned on the popular single-span MRC benchmark SQuAD [10] to extract
two indices from the passage that denote the start and end of the answer span.

Learning to recompose partial answers We propose learning the rule needed to recompose partial
answers based on the few-shot examples, using a symbolic learner. An ideal candidate for this task is
the Inductive Learning from Answer Set Programs (ILASP) system [7]]. It is a logic-based machine
learning system that induces ASP rules to cover the set of positive examples without covering negative
examples using efficient combinatorial search offered by answer-set solvers. The noisy learning task,
ILPrsS. = (B, Sy, E), enables robust learning of rules in the presence of noise in the examples
by assigning a penalty for not covering each example. Background knowledge, B, encodes what we
know about a problem, which allows injecting existing knowledge. In this case, we define the space
of possible operations (addition, subtraction and negation), type declarations, and constraints that
apply to this problem. The hypothesis space, Sy, is defined by the mode declarations, which state
which predicates may appear in the head and body of learnable rules. In our formulation, positive
examples are created by augmenting the annotation of the gold answer for each of the few-shot
examples with partial answers retrieved by a single-hop RC model, given the annotated subquestions.
The task is to learn a rule that finds the final answer from the partial answers. A penalty is assigned
to each of the examples based on the scores given by the single-hop RC model, where a lower score
means that the RC model is less confident in the answer, and a smaller penalty should be incurred for
not covering it. A full example of this learning task is specified in Appendix (§5.3).

Calculate answer As the final step of our approach, the answer to the complex question is calculated
by applying the rule predicted by the symbolic learner on the retrieved partial answers of the simpler
questions from the single-hop RC model. In the example in Figure[l] this is done by subtracting the
two numbers 15137 and 10898. Since this component is applied symbolically, there is no risk of
miscalculating an answer given an operation and its operands.

3 Experiments

We evaluate and compare our approach to different DROP [3] development set data splits, each
covering a different reasoning type. Subtraction Clean and Noisy include subtraction questions,
curated manually and heuristically, respectively. Arithmetic and Negation include a subset of 500
questions predicted as these types by MTMSN [5]. Further details about these splits are described in

Appendix (§5.1).

In this work, models are used off-the-shelf. No models are fine-tuned for our specific tasks. We
experimented with four different LLMs; the first two, OpenAI’s GPT3.5Turbo [8] and Cohere’s
Command [2] are accessed via an APIL. Since these models are proprietary, their architecture and
training procedure details are unknown, but they are expected to contain 52B parameters or more.
The other two are open-source, the LLaMa 7B [[15]], and Alpaca 7B [14] models, where the first is a
base model and the second is instruction fine-tuned similar to Wang et al. [[16].

Our baselines include models were designed specifically for DROP, the problem decomposition
model Reasoning Templates[1]] and the module-based MTMSN [5]], in addition to pure prompting
methods of LLM{'} the first is Zero-Shot evaluation, where the prompt only includes the test question
and passage. The second is Chain-of-Thought Prompting [[17]], which uses the chain-of-thought
annotation for the 3-nearest neighbours in the small annotated set. Furthermore, two ablations are
considered for our approach: one where we assume that we know the type of the test question
(gold-type) and its canonical set of few-shot examples for that type are used; an upper-bound for our
approach, and another where random examples are used from the small annotated set; a lower bound.
Table [T|shows our results using the accuracy of the final answer.

Firstly, evaluations show that our approach surpasses Reasoning Templates when using a gold-type,
even though no templates are engineered. Type prediction performs almost as well as using gold-type
for all models. Our approach is competitively close to MTMSN, surpassing it on the Negation
type. While MTMSN has higher accuracy for more settings, we note that MTMSN has been trained
specifically for this task with large amounts of data, and generalising to more reasoning beyond

'We set Temperature to 0 to reduce variation and make the generations more deterministic



Table 1: Accuracy of the final answer for our approach, compared to benchmark-specific models, in
addition to pure LLM prompting baselines.

Model Subtraction  Subtraction  Arithmetic Negation
Clean Noisy
DROP-specific Rcasonmg Templates 74.40 64.00 26.00 0.00
. - Subtraction [1]
baselines
MTMSN [5] 86.50 81.30 72.60 94.20
cohere command 17.31 15.58 19.20 13.60
Z hot GPT3.5Turbo 73.08 67.83 58.80 57.60
ero=sho llama7b 5.77 5.49 9.40 4.60
Pure LLM alpaca7b 0.00 3.25 6.60 4.20
Prompting cohere command 46.15 46.19 43.40 68.40
3-shot KNN GPT3.5Turbo 67.31 67.71 61.20 79.60
Chain-of-Thought 1lama 7b 30.77 25.90 29.40 42.40
alpaca 7b 21.15 20.51 20.80 18.20
Using a gold type of  cohere command 80.77 (+34.62)  65.70 (+19.51) - 93.80 (+25.4)
3 examples per llama7b 76.92 (+46.15)  64.23 (+38.33) - 95.60 (+53.2)
reasoning type alpaca7b 78.85 (+57.70)  63.57 (+43.06) - 94.40 (+76.2)
Using 3 KNN cohere command 48.08 37.78 16.40 0.00
o examples from llama7b 26.92 29.48 16.40 0.00
urs annotated 300 set alpaca7b 36.54 33.18 15.60 0.00
Using 3 random cohere command 17.31 14.24 7.40 0.00
examples from llama7b 5.77 8.18 3.40 0.20
annotated 300 set alpaca7b 11.53 9.53 4.40 0.00
Using Type cohere command 80.77 58.40 29.40 90.80
Prediction (alpaca7b  1lama7b 75.00 57.06 27.20 91.20
model) alpaca7b 76.92 55.94 31.00 90.20

the previously defined ones would involve re-engineering its architecture and retraining the model.
Whereas in our approach, the learning task is in charge of identifying the reasoning involved, and it is
lightweight to extend.

Furthermore, we observe that our approach improves performance for all LLMs (absolute improve-
ment is highlighted in parentheses, we exclude GPT3.5Turbo due to concerns of data contamination)
over pure prompting methods. We also find that our approach bridges the gap between smaller and
larger LLMs (7B and 52B), where they have comparable performance with each other, whereas the
difference in performance is stark in the pure prompting setting.

While using KNN is better than using random few-shot examples, performance remains suboptimal,
indicating an issue with this component. We investigate this issue and find that the similarity function
of sentence embeddings [12] does not necessarily retrieve questions that have similar reasoning, and
seems to reflect lexical similarity more. While we use an encoder trained on the QQP-paraphrasing
task, this issue could have arisen from data scarcity in the small annotated subset; meaning that
questions of a similar type can be distant in the embedding space. See Appendix (§5.2)) for examples.

In this proof-of-concept, we have defined rule learning for a limited space of operations (subtrac-
tion, addition, and negation) with shallow reasoning. However, despite these limitations, we have
demonstrated in this paper that using this neuro-symbolic approach is encouraging; it facilitates
robust numerical reasoning, as shown by the significant improvement over pure LLM prompting.
It is interpretable, reuses smaller, modular components without the need to collect large amounts
of training data, and provides some guarantees on the provided reasoning traces. Future work will
involve extending the task to allow for nested reasoning and learning commonsense knowledge to
solve other complex questions beyond numerical reasoning.

4 Conclusion

In this work, we proposed a neuro-symbolic approach to tackle numerical reasoning problems in
MRC. It leverages in-context learning with LLMs to decompose complex questions and symbolic
learning methods to learn rules for recomposing partial answers. We show that this simple approach
is comparable with DROP-specific SOTA models, despite not needing large amounts of training data.
It also bridges the gap between the performance of smaller and larger LLMs, in addition to providing
reliable, interpretable reasoning traces.
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S Supplementary Material

5.1 Datasets

Our evaluations include different reasoning splits from the DROP [3]] devset. These have been curated
as follows:

Subtraction Clean A subset of 52 subtraction questions that have been manually curated.

Subtraction Noisy A subset of 892 subtraction questions that have been heuristically curated based
on the starter trigrams, where we include questions starting with ‘How many more’ or ‘How
many fewer’.

Arithmetic A subset of 500 questions randomly sampled from the 3022 questions MTMSN] srGE
predicted as add/sub type (where — , 4, or 0 are assigned to every number in the passage).
The 500 examples should represent the entire subset, but we only use 500 to reduce the
computational costs.

Negation A subset of 500 questions randomly sampled from the 1098 questions MTMSN7 srgE
predicted as a logical negation type, where the answer is usually (100-X). These are questions
like ‘What percent are not non-families?’.

5.2 Nearest-neighbors evaluation

We briefly mentioned in the paper that we have investigated the relatively low performance of our
approach with KNN demonstrations, which we attribute to the similarity function capturing lexical
similarity more than shared reasoning. Consider the following test question, “How many more
households are there than families?", which is of a Subtraction type.

The two closest neighbours of annotated questions are:

“How many percent are not households made up of individuals?" — which is of type Negation
“Which is larger, families or households?" — which is of type Comparison

Learning how to solve the example questions does not inform us in deciding how to approach the
test question, so these are not the best demonstrations to use for learning the reasoning needed for a
complex test question.
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5.3 ILASP task

For the running example used in this paper, below is the ILASP program generated from the partial
answers to each example subquestion, and the annotated answer. Each example is associated with a
unique label exi and a penalty value following the Q.

e Y

Examplel Jezamples

#pos (exz0033, { result(69309) }, { }, {
term(1,181035).

term(2,111726) .

;- result(X), X != 69309.

3.

#pos(ex1026, { result(27507) }, { }, {
term(1,90649).

term(2,63142).

;- result(X), X != 27507.

3.

#pos (ex2033, { result(768) }, { }, {
term(1,8061).

term(2,7293).

;- result(X), X != 768.

3.

Jbackground knowledge
:- term(1,X0), term(2,X1), result (Y1), result(Y2), Y1 != Y2.

result(Y) :- term(1,X0), term(2,X1), solution(X0,X1,Y).
result (Y):- term(1,X0), solution(X0,7).
subtraction (X0,X1,Y) :- num(X0), num(X1), r(Y), Y=X0-X1.

addition (X0, X1, Y):- num(X0), num(X1), »(Y), Y=X0+X1.
neg (X0, Y):- num(X0), »(Y), Y=100-X0.

Jtype declarations
num (181035) .

num (111726) .
7(69309) .

num (90649) .

num (63142) .
r(27507) .

num (8061) .

num (7293) .

r(768).

/mode declarations

#modeh (solution (var(num), wvar(num), wvar(r))).

#modeh (solution (var(num), wvar(r))).

#modeb (1, subtraction(var(num), wvar(num), wvar(r)), (positive)).
#modeb (1, addition (var(num), wvar(num), wvar(r)), (positive)).
#modeb (1, neg(var(num), war(r)), (positive)).

#mazv (3) .

ILASP learns that the examples used a subtraction operation to arrive at the final answer,
predicting the rule:

solution (V1,V2,V3) :- subtraction(V1,V2,V3).

5.4 Illustrative Example

Our approach helps facilitate more robust numerical reasoning in machine reading comprehension
than using LLMs on their own. To illustrate this, we show an example to compare the following LLM
generations with the answer provided by our modular approach that combines the complementary
strengths of LLMs and symbolic learning.

Example 2 Consider the following example:

“There were 74,285 households, out of which 21,922 (29.5%) had children
under the age of 18 living in them, 36,729 (49.4%) were marriage living
together, 7,685 (10.3%) had a female householder with no husband present,
3,804 (5.1%) had a male householder with no wife present. There were 4,386




(5.9%) POSSLQ, and 504 (0.7%) same-sex partnerships. 18,489 households
(24.9%) were made up of individuals and 6,527 (8.8%) had someone living
alone who was 65 years of age or older. The average household size was 2.55.
There were 48,218 family (U.S. Census) (64.9% of all households); the average
family size was 3.07.”

Question: How many more households are there than Marriage couples living together?

Below are the raw LLM generations, for each of the used prompting settings. Only one of
them (GPT3.5 Turbo) got the correct answer in the Chain-of-thought setting. In 0-shot, while
it generated the correct expression, the calculation is wrong. The rest of the models fail to
find the correct answer; they fail to find the relevant quantities, and also fail to come up
with the expression needed to find the answer, even with Chain-of-Thought. Perhaps the
closest one is Cohere’s command finding the difference in percentage, between the whole
(households) and the percentage of ‘marriage couples living together’.

Using our approach, the type of question is correctly predicted as ‘Subtraction’, using the
canonical examples of a subtraction type, LLMs succeed at generating the two subquestions,
‘How many households are there?’ and ‘How many Marriage couples are living together?’,
which get the correct partial answers 74,285 and 36,729, and a final correct answer 37,556,
based on the predicted rule solution(V1,V2,V3):-subtraction(V1,V2,V3).

Model
GPT3.5 Turbo

Zero-Shot

’38,556 households (74,285 - 36,729 =
38,556) more than marriage couples living

3-Shot Chain-of-Thought

‘The number of households that are mar-
riage couples living together is 36,729. To

households had children under the age of
18 living in them?\nA: 29.5%.\nWhat per-
centage of households had a female house-
holder with no husband present\nWhat
percentage of households had a male house-
holder with no wife present?\nWhat per-
centage of households were made up of
individuals?\nWhat percentage of house-
holds had someone living alone who was 65
years of age or older\nWhat was the aver-
age household size’\nWhat was the average
family size?”\nWhat was the percentage of
families compared to households?’

together.’ find out how many more households there
are than marriage couples living together,
we need to subtract this number from the
total number of households: \n\n74,285 -
36,729 = 37,556\n\nTherefore, there are
37,556 more households than marriage cou-
ples living together.
Cohere Com- “n4,789’ ‘49.4% of households are marriage couples
mand living together. The difference between 100
and 49.4 is 50.6. The answer is 50.6.
LLama 7b ‘13,553.\nQ: How many more households ‘21,922 is greater than 36,729. The an-
are there than Marriage couples living swer is 21,922\n\nQ: There were 74,285
together?’\nA: The answer is 13,553 \nQ: households, out of which 21,922 (29.5%)
How many more households are there than — had children under the age of 18 living
Marriage couples living together?\nA: The  in them, 36,729 (49.4%) were marriage
answer is 13,553.\nQ: How many more living together, 7,685 (10.3%) had a fe-
households are there than Marriage cou- male householder with no husband present,
ples living together’\nA: The answer is 3,804 (5.1%) had a male’
13,553 \nQ: How many more households
are there than Marriage couples living to-
gether\nA: The answer is 13,
Alpaca 7b ‘11,267 (15.1%).\nWhat percentage of ‘29.5% of households are made up of chil-

dren under the age of 18. The difference
between 100 and 29.5 is 70.5. The answer
is 70.5’
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