
What Algorithms can Transformers Learn?
A Study in Length Generalization

Hattie Zhou∗1,2, Arwen Bradley1, Etai Littwin1, Noam Razin∗1,3, Omid Saremi1,
Josh Susskind1, Samy Bengio1, and Preetum Nakkiran1

1Apple
2Mila, Université de Montréal

3Tel Aviv University

Abstract

Large language models exhibit surprising emergent generalization properties, yet
also struggle on many simple reasoning tasks such as arithmetic and parity. In this
work, we focus on length generalization, and we propose a unifying framework to
understand when and how Transformers can be expected to length generalize on
a given task. First, we show that there exist algorithmic tasks for which standard
decoder-only Transformers trained from scratch naturally exhibit strong length
generalization. For these tasks, we leverage the RASP programming language
(Weiss et al., 2021) to show that the correct algorithmic solution which solves
the task can be represented by a simple Transformer. We thus propose and give
evidence for the RASP-Generalization Conjecture: Transformers tend to learn a
length-generalizing solution if there exists a short RASP-L program that works for
all input lengths. We then leverage our insights to give new scratchpad formats
which yield strong length generalization on traditionally hard tasks (such as parity
and addition). Overall, our work provides a novel perspective on the mechanisms
of length generalization and the algorithmic capabilities of Transformers.

1 Introduction

In this work, we aim to understand the factors that determine a standard decoder-only Transformer’s
ability to length generalize on algorithmic tasks. Length generalization evaluates the model on
problems that are longer (and harder) than seen in the training set, and is used as a proxy for
whether the model has learned the correct problem-solving strategy for the given task. There is
currently scattered evidence regarding the length generalization capabilities of Transformers. Standard
Transformers trained from scratch on addition and other arithmetic tasks exhibit little to no length
generalization (Nye et al., 2021; Nogueira et al., 2021; Lee et al., 2023), and even models finetuned
from pretrained LLMs struggle on simple algorithmic tasks (Anil et al., 2022). On the other hand,
length generalization can occur for particular architectural choices and scratchpad formats (Jelassi
et al., 2023; Kazemnejad et al., 2023). As a starting point of our work, we show that there exist
algorithmic tasks where Transformers trained from scratch generalize naturally far outside of the
training distribution. Why then do Transformers exhibit strong length generalization on certain tasks
and not others, and what are the mechanisms behind generalization when it occurs? In the following
sections, we will propose a unifying framework to predict cases of successful length generalization
and describe the possible underlying mechanisms. See Appendix A for additional related works.

∗Work done while interning at Apple.

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Workshop on MATH-AI.

Transformer1 Transformer2≈

Length Generalization

Transformer2 Train(Xlen 7, Ylen 7)← ≤ ≤

y7

x1 x2 x3 x4 x5 x6 x7

Transformer1 Train(Xlen 4, Ylen 4)← ≤ ≤

x1 x2 x3 x4

y4

(a) Transformer length generalization

10 20 30 40 50 60 70
Additional Length over Max Training Length

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 E
M

Len=10
Len=20

Len=30
Len=40

Len=50
Len=60

Len=70
Len=80

(b) Length generalization on counting task

Figure 1: (a) For a Transformer to length-generalize on an algorithmic task, the same Transformer
must work on all lengths of the task, analogous to how the same program can solve a task on all
inputs. For some tasks, it is not even clear if such a Transformer exists, and so length generalization
is likely to fail. (b) Length generalization for the counting task, measured by exact match accuracy
(EM). Transformers are trained on sequences of varying length, and tested at different levels of
out-of-distribution over the maximum training length. Models trained on sequences up to length 60
or more exhibit near perfect length generalization up to length 150. Medians over 20 random seeds.

Preview of Length Generalization. We begin by introducing a simple task that exhibits strong
length generalization. The task is “counting”: given a prompt SoS a b > for numbers
a, b, the model must count from a to b inclusive, and terminate with “EoS”. An example is:
SoS 2 5 > 2 3 4 5 EoS . We train a Transformer with learned positional embeddings on

count sequences of lengths up to 50, with random a and b points in [0, 155]. This trained model then
length-generalizes near perfectly when prompted to count sequences of length 100 (see Figure 1b).

Possible Mechanisms. Intuitively, if the Transformer model learns a function that applies the correct
transformation for inputs of any length in the context, then we can expect it to length generalize. For
the count task, length generalization is possible if the model somehow learns a correct algorithm to
solve the count task. One such algorithm is as follows. To predict the next token:

1. Search for the most-recent SoS token, and read the following two numbers as a, b.
2. Read the previous token as x. If (x=='>'), output a. If (x==b), output EoS.
3. Otherwise, output (x+ 1).

This program applies to sequences of all lengths. Thus, if the model ends up learning this program
from short sequences, then it will automatically length-generalize to long sequences. We will show
that a Transformer can easily represent the above program, uniformly for all input lengths. To
reason about what is “simple” to represent for Transformers, we leverage the RASP programming
language (Weiss et al., 2021; Lindner et al., 2023), which is essentially an “assembly language for
Transformers.” (We describe RASP, and our extension of it RASP-L, in Section 3). We then propose
the following toy model of learning.

Toy Model (RASP Learning). For symbolic tasks, Transformers tend to learn the shortest
RASP-L program which fits the training set, if one exists. Thus, if this minimal program exists
and correctly length-generalizes, then so will the Transformer.

We find this toy model to be a useful conceptual tool for predicting when Transformers will length-
generalize. In Section 2, we introduce the RASP-Generalization conjecture, which predicts that
Transformers are likely to length-generalize on tasks which can be solved by a short RASP-L program
— and unlikely otherwise. We support this conjecture with experiments across various algorithmic
tasks in Section 3. We apply our insights in Section 4 to modify the input and scratchpad formats
of certain “hard” tasks (such as parity and decimal addition), to make them possible to solve with

2

RASP-L programs. These modifications significantly improve length generalization of Transformers,
as expected by our conjecture.

2 Main Conjecture

In our main conjecture, and throughout the paper, we consider Transformers trained to completion on
their training distribution. Training details are provided in Appendix B. A key ingredient we develop
is a restriction of RASP which we call RASP-L, which we describe in more detail in Section 3.

RASP-Generalization Conjecture. A decoder-only autoregressive Transformer is likely to length-
generalize when trained to completion on an algorithmic task if the following conditions hold.

1. Realizability. The true next-token function for the task can be represented by a single causal
Transformer which works on all input lengths.

2. Simplicity. This representation is “simple”, meaning it can be written in RASP-L (a
learnable subset of RASP defined in Section 3).

3. Diversity. The training data is sufficiently diverse, such that there does not exist any shorter
RASP-L program which agrees with the task in-distribution but not out-of-distribution.

Remarkably, the above features are empirically correlated with: (1) generalization to longer lengths
out-of-distribution, and (2) faster train optimization in-distribution.

The first condition of realizability is actually quite stringent, because it requires a single Transformer
to be able to solve the task at all lengths. This is not always possible: for example, next-token functions
which require Ω(n3) computation time on inputs of length n provably cannot be represented by a
Transformer, however large (by the Time Hierarchy Theorem e.g. Arora & Barak (2009)).

3 RASP-L: What Algorithms Can Transformers Learn?

To apply our conjecture, we need to determine if a given task can be solved in RASP-L. RASP-L is
a fairly minor modification to RASP (Weiss et al., 2021), which we describe in Appendix G.4. We
briefly describe RASP here; see Weiss et al. (2021) and Lindner et al. (2023) for more details.

The original RASP language can be thought of as a domain-specific-language for specifying Trans-
former weights, in human-readable form. Importantly, RASP was designed for the computational
model of Transformers, so short RASP programs define functions which are “easy to represent” for
Transformers. In Appendix G.4.2 we provide a small library of useful functionality built on the
RASP-L core. This also serves as a representative sample of functions that are “easy” to implement
RASP-L, to build intuition about programming causal Transformers.

Intuition. The key intuition about RASP is that it only allows parallelizable operations, because
Transformers are an inherently parallel model of computation. This makes performing inherently-
sequential computation, such as iterating through each input symbol and updating an internal state,
tricky if not impossible to write in RASP. This is why loops are not allowed in RASP: because
a Transformer has only constant depth, and cannot directly simulate an arbitrary number of loop
iterations. The one way of bypassing this limitation is to exploit the autoregressive inference
procedure: since the model is called iteratively at inference time, this effectively provides an “outer-
loop” that can enable sequential computation which uses the input context as the state. This is exactly
what scratchpads enable, as we elaborate in Section 4.

Experimental validation. To test this conjecture, we evaluate Transformers trained from scratch on
3 tasks that have simple RASP-L programs and 3 tasks that do not. The three easy tasks are: count,
mode, and copy with unique tokens. We show in Appendix G.4 that the correct algorithms to solve
these tasks have short RASP-L representations. The three hard tasks are: addition, parity, and copy
with repeated tokens. These tasks do not have simple RASP-L solutions. Appendix D provides a
detailed description of the tasks and experimental results, as well as intuition for why the difficult
tasks do not permit simple RASP-L solutions. Indeed, we show in Figure 5 that Transformers exhibit
strong length generalization on the set of easy tasks, and no length generalization on the hard tasks.

3

30 35 40 45
Max Train Length

0.0

0.2

0.4

0.6

0.8

1.0

Fo
rw

ar
d

EM
 a

t L
en

gt
h

50

(a) Forward-order addition with
index hints

30 35 40 45
Max Train Length

0.0

0.2

0.4

0.6

0.8

1.0

Re
ve

rs
e

EM
 a

t L
en

gt
h

50

(b) Reverse-order addition with
index hints

25 30 35 40 45
Max Train Length

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 E
M

 a
t L

en
gt

h
50

(c) Parity with scratchpad

Figure 2: Length generalization on addition and parity. Plot shows 20 individual trials per length,
as well as their median (solid line). (a) Shows generalization performance for forward addition with
index hints on hard carry examples of length 50. No length generalization is observed. (b) Shows the
generalization of reverse addition with index hints on hard carry examples of length 50. Most runs
start to length generalize perfectly on 50 digit addition once the training length is greater than 40. (c)
Shows generalization performance for parity with scratchpad, on length 50 inputs. Most runs start to
generalize perfectly on 50 digit addition once the training length is greater than 35.

4 Application: Why Scratchpads Help

A number of works have observed that training or prompting with scratchpad-type approaches
significantly improves reasoning performance (Wang et al., 2019; Nye et al., 2021; Wei et al.,
2022; Anil et al., 2022; Zhou et al., 2022b,a). Our RASP conjecture provides a natural way to
understand when and why scratchpads can improve generalization. For operations that are difficult
for a Transformer to learn naturally, we can change the format of both the question and the solution
such that they permit a shorter RASP-L solution (or any RASP-L solution at all).

Scratchpad helps generalization on addition. One obstacle to implementing the naive addition
algorithm in RASP-L is the non-causality of the carry operation (the first token of the answer
depends on the carries of all subsequent output tokens); we describe this in-detail in Appendix D.
To address this non-causality, we can format the prompt and output in reverse-order. For example,
5 4 + 3 7 > 9 1 becomes 5 4 + 3 7 > 1 9 . In reverse order addition, each output digit only needs
to reference the previous output digit to get the carry value for the current step. In the example
5 4 + 3 7 > 1 9 , to know that 1 should be added to 5+3, the model can look at the previous output
and see that there is a carry of 1. Thus, previous tokens in the output act like a built-in scratchpad.
In forward order addition, however, determining the carry at each step requires a more complex
operation involving all remaining digit sums. In the example 5 4 + 3 7 > 9 1 , the step 5+3 needs to
also compute 4+7 in order to know that a carry should be added. In the next output step, 4+7 needs
to be computed again (see Figure 9 for an illustration).
Another operation which is required for addition, but difficult for Transformers, is precisely accessing
and manipulating positional indices (e.g. to query the summand digits for the current output digit). To
address the indexing challenge, we can leverage induction heads (Olsson et al., 2022), which are easy
to represent in RASP-L, to simplify the addition algorithm for a Transformer. We do so by adding
“index hints” to the prompt and answer: 5 4 + 3 7 > 9 1 becomes a 5 b 4 + a 3 b 7 > a 9 b 1 . This
enables us to get the corresponding digits for each sum step by calling induct on its index hint,
b, thus sidestepping the need to precisely access and manipulate positional indices. The complete
RASP-L program for reverse-order addition with index hints is given in Appendix G.4.7.

In Figure 2, we evaluate addition on a “hard” carry setting, where we constrain the examples to have
the longest possible carry chain for the given length. For example, a hard carry instance of length 3 is
381+619 = 1000, which requires the model to compute the carry over a chain of 3 digit positions. We
find that index hints allow reverse addition to length generalize near perfectly on up to 10 additional
digits, whereas the harder forward addition setting still exhibits no generalization. We show in
Figure 8 that index hints allow both forward and reverse addition to generalize in the standard “easy”
carry setting where the two numbers are sampled randomly and independently. Lastly, in Appendix E,
we show the a well-designed scratchpad can also lead to strong length generalization on parity, and

4

an intuitive scratchpad for the mode task actually leads to worse generalization performance due
to increased complexity of the corresponding RASP-L program. Our results on addition and parity
demonstrate the first instance (to our knowledge) of strong length generalization for Transformer
models trained from scratch on these tasks.

References
Emmanuel Abbe, Samy Bengio, Aryo Lotfi, and Kevin Rizk. Generalization on the unseen, logic

reasoning and degree curriculum, 2023.

Cem Anil, Yuhuai Wu, Anders Johan Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Venkatesh
Ramasesh, Ambrose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length
generalization in large language models. In Advances in Neural Information Processing Systems,
2022. URL https://openreview.net/forum?id=zSkYVeX7bC4.

Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability and limitations of transformers
to recognize formal languages, 2020.

Satwik Bhattamishra, Arkil Patel, Varun Kanade, and Phil Blunsom. Simplicity bias in transformers
and their ability to learn sparse boolean functions, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

David Chiang and Peter Cholak. Overcoming a theoretical limitation of self-attention, 2022.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Antonia Creswell and Murray Shanahan. Faithful reasoning using large language models, 2022.

Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, and Pedro A. Ortega. Neural networks and
the chomsky hierarchy, 2023.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jian, Bill Yuchen Lin, Peter West,
Chandra Bhagavatula, Ronan Le Bras, Jena D Hwang, et al. Faith and fate: Limits of transformers
on compositionality. arXiv preprint arXiv:2305.18654, 2023.

Daniel Furrer, Marc van Zee, Nathan Scales, and Nathanael Schärli. Compositional generalization in
semantic parsing: Pre-training vs. specialized architectures, 2021.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital
Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai,
Yin Tat Lee, and Yuanzhi Li. Textbooks are all you need, 2023.

Samy Jelassi, Stéphane d’Ascoli, Carles Domingo-Enrich, Yuhuai Wu, Yuanzhi Li, and François
Charton. Length generalization in arithmetic transformers, 2023.

Łukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. arXiv preprint arXiv:1511.08228,
2015.

Andrej Karpathy. nanogpt. https://github.com/karpathy/nanoGPT, 2023.

5

https://openreview.net/forum?id=zSkYVeX7bC4
https://github.com/karpathy/nanoGPT

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva Reddy.
The impact of positional encoding on length generalization in transformers, 2023.

Jeonghwan Kim, Giwon Hong, Kyung-min Kim, Junmo Kang, and Sung-Hyon Myaeng. Have you
seen that number? investigating extrapolation in question answering models. In Proceedings of
the 2021 Conference on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, 2021.

Nayoung Lee, Kartik Sreenivasan, Jason D. Lee, Kangwook Lee, and Dimitris Papailiopoulos.
Teaching arithmetic to small transformers, 2023.

Aitor Lewkowycz, Anders Andreassen, David Martin Dohan, Ethan S Dyer, Henryk Michalewski,
Vinay Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu,
Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems
with language models. 2022. URL https://arxiv.org/abs/2206.14858.

Yuxuan Li and James McClelland. Representations and computations in transformers that support
generalization on structured tasks. Transactions on Machine Learning Research, 2023. ISSN
2835-8856. URL https://openreview.net/forum?id=oFC2LAqS6Z.

David Lindner, János Kramár, Matthew Rahtz, Thomas McGrath, and Vladimir Mikulik. Tracr:
Compiled transformers as a laboratory for interpretability. arXiv preprint arXiv:2301.05062, 2023.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata, 2023.

Aman Madaan and Amir Yazdanbakhsh. Text and patterns: For effective chain of thought, it takes
two to tango, 2022.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. Investigating the limitations of transformers with
simple arithmetic tasks, 2021.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your work:
Scratchpads for intermediate computation with language models. arXiv preprint arXiv:2112.00114,
2021.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads. Transformer Circuits Thread, 2022.
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html.

Santiago Ontañón, Joshua Ainslie, Vaclav Cvicek, and Zachary Fisher. Making transformers solve
compositional tasks, 2022.

Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
input length extrapolation. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=R8sQPpGCv0.

Anian Ruoss, Grégoire Delétang, Tim Genewein, Jordi Grau-Moya, Róbert Csordás, Mehdi Bennani,
Shane Legg, and Joel Veness. Randomized positional encodings boost length generalization of
transformers. Toronto, Canada, 2023. Association for Computational Linguistics.

Abulhair Saparov, Richard Yuanzhe Pang, Vishakh Padmakumar, Nitish Joshi, Seyed Mehran Kazemi,
Najoung Kim, and He He. Testing the general deductive reasoning capacity of large language
models using ood examples, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models, 2023.

6

https://arxiv.org/abs/2206.14858
https://openreview.net/forum?id=oFC2LAqS6Z
https://openreview.net/forum?id=R8sQPpGCv0

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Petar Veličković and Charles Blundell. Neural algorithmic reasoning. Patterns, 2(7):100273, 2021.

Haoyu Wang, Mo Yu, Xiaoxiao Guo, Rajarshi Das, Wenhan Xiong, and Tian Gao. Do multi-
hop readers dream of reasoning chains? In Proceedings of the 2nd Workshop on Machine
Reading for Question Answering. Association for Computational Linguistics, 2019. URL https:
//aclanthology.org/D19-5813.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny
Zhou. Chain of thought prompting elicits reasoning in large language models. arXiv preprint
arXiv:2201.11903, 2022.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers, 2021.

Sean Welleck, Peter West, Jize Cao, and Yejin Choi. Symbolic brittleness in sequence models: on
systematic generalization in symbolic mathematics. In AAAI, 2022. URL https://arxiv.org/
pdf/2109.13986.pdf.

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyürek, Boyuan Chen, Bailin Wang, Najoung Kim,
Jacob Andreas, and Yoon Kim. Reasoning or reciting? exploring the capabilities and limitations of
language models through counterfactual tasks, 2023.

Shizhuo Dylan Zhang, Curt Tigges, Stella Biderman, Maxim Raginsky, and Talia Ringer. Can
transformers learn to solve problems recursively?, 2023.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Olivier Bousquet, Quoc Le, and Ed Chi. Least-to-most prompting enables complex reasoning in
large language models. arXiv preprint arXiv:2205.10625, 2022a.

Hattie Zhou, Azade Nova, Hugo Larochelle, Aaron Courville, Behnam Neyshabur, and Hanie Sedghi.
Teaching algorithmic reasoning via in-context learning, 2022b.

7

https://aclanthology.org/D19-5813
https://aclanthology.org/D19-5813
https://arxiv.org/pdf/2109.13986.pdf
https://arxiv.org/pdf/2109.13986.pdf

A Additional Related Works

Large language models (LLMs) have shown impressive abilities in natural language generation,
reading comprehension, code-synthesis, instruction-following, commonsense reasoning, and so on
(Brown et al., 2020; Chen et al., 2021; Chowdhery et al., 2022; Lewkowycz et al., 2022; Gunasekar
et al., 2023; Touvron et al., 2023). However, when evaluated in controlled studies, Transformers
often struggle with systematic generalization (Nogueira et al., 2021; Ontañón et al., 2022; Dziri et al.,
2023; Wu et al., 2023; Saparov et al., 2023). It is thus not clear how to reconcile Transformers’
seemingly-impressive performance in some settings with their fragility in others.

Our paper is related to the line of work that seeks to understand the capabilities and limitations of
Transformer models when it comes to algorithmic reasoning (Kaiser & Sutskever, 2015; Veličković
& Blundell, 2021). Recent studies have focused on length generalization on algorithmic tasks as a
measure of how well language models can learn to reason (Nogueira et al., 2021; Kim et al., 2021;
Anil et al., 2022; Lee et al., 2023; Dziri et al., 2023; Welleck et al., 2022; Liu et al., 2023). In this
paper, we also focus on simple tasks like arithmetic and study length generalization on the standard
Transformer architecture. Related to this, Lee et al. (2023) study how well transformers trained
from scratch can learn simple arithmetic tasks, and finds that no length generalization is observed.
Nogueira et al. (2021) find that partial length generalization on addition is observed only when models
reach 3B parameters and when the addition questions are presented in reverse order. Jelassi et al.
(2023) study models trained on addition and find strong generalization performance when using a
few examples of longer sequences. However, they required non-standard architectures (non-causal
Transformers) and training procedures (artificial padding) to observe this, and still find that the model
does not generalize to unseen length that is in between the minimum and maximum lengths seen
during training.

Moreover, our work contributes to the study of what makes for effective scratchpads. Other papers
have also found that using positional tokens in the prompt can help with length generalization
(Nogueira et al., 2021; Li & McClelland, 2023). However, these works do not provide a framework
for understanding why these tricks are helpful. A number of papers also study how chain-of-thought
style prompting helps with reasoning performance (Wei et al., 2022; Zhou et al., 2022b,a; Creswell &
Shanahan, 2022; Madaan & Yazdanbakhsh, 2022), but these focus on in-context learning and do not
study the effect of training models on these formats.

Other papers also aim to understand the limits of what Transformers can learn and represent. Bhat-
tamishra et al. (2020) and Delétang et al. (2023) study the ability of Transformers to represent and
generalize on families of formal languages. Zhang et al. (2023) evaluate the ability of transformer
models to emulate the behavior of structurally recursive functions from input-output examples. Liu
et al. (2023) study how shallow Transformers can simulate recurrent dynamics representable by
finite-state automata. Both works identify shortcut solutions that become brittle on out-of-distribution
samples. Bhattamishra et al. (2023) suggest that Transformer models have an inductive bias to-
wards learning functions with low sensitivity, such as sparse boolean functions, but focus on the
in-distribution setting. Abbe et al. (2023) also propose a simplicity bias in Transformers, but use
“minimum-degree” as their notion of function simplicity. However, they only consider functions with
fixed input dimension rather than programs on arbitrary input lengths.

Lastly, there have been many other approaches to improving length generalization in Transformers.
These include studying how various training hyperparameters and design choices influence compo-
sitional generalization (Furrer et al., 2021; Ontañón et al., 2022), and designing better positional
embeddings (Press et al., 2022; Ontañón et al., 2022; Kazemnejad et al., 2023; Ruoss et al., 2023).

B Additional Experimental Details

A Transformer (Vaswani et al., 2017) refers to a decoder-only causal Transformer architecture with
constant depth, width, and fixed setting of weights, along with any computable positional embedding
scheme2. As a technical point, we allow the transformer weights to take values in the extended real

2This is a technical detail: we consider position encoding schemes which can be uniformly generated, i.e.
there exists a Turing machine which on input (i, n), produces the positional embedding vector for index i out of
n total.

8

line R∪{±∞}, to allow saturating the softmax at arbitrary context lengths. We consider only greedy
sampling throughout, since our tasks are deterministic.

We train all of our models to convergence on the train distribution where possible. For all tasks, the
length of training examples is sampled uniformly from length 1 up to the max training length. We
train Transformer models from scratch and use learned positional embedding on all tasks. At train
time, we “pack the context”, filling the Transformer’s context window with multiple independent
samples of the task, and we randomly shift the Transformer along its context window. This procedure
of packing and shifting the context mirrors standard practice in LLM training on real data (Karpathy,
2023; Brown et al., 2020), but is typically not done in prior works using synthetic tasks. It is an
important detail: packing and shifting the context allows all positional embeddings to be trained, and
encourages the transformer to treat all positions symmetrically. At test time, we evaluate examples
without packing and shifting. We measure the exact match (EM) on all outputs, which is 1 if the
entire output sequence is correct, and 0 otherwise.

For all experiments, we tokenize every character individually, including digits of a number. We
train in the online setting, where each batch is sampled iid from the train distribution instead of
from a finite train set — this avoids overfitting issues, and is closer to the training of modern LLMs.
Unless otherwise specified, we evaluate test performance on 5× the batch size number of samples.
Unless otherwise specified, we run each experiment on 20 random seeds and report the median of
the runs. We select hyperparameters for each task based on what is required to fit the training set.
Hyperparameter details can be found in Table 1.

Count. For the count task, we train with an alphabet size of 155 and evaluate on test sequences
up to 150 in length. Given the nature of the task, we enumerate all possible sequences of each test
length at evaluation time. The alphabet is ordered such that the sequence between any two tokens
in the alphabet is clearly defined. At train time, the length of each example is sampled uniformly
between 1 and the maximum training length.

Mode. For the count task, we train on an alphabet of 52 tokens. Each example consist of 5 unique
tokens sampled randomly from the alphabet. The length of each example is sampled uniformly
between 1 and the maximum training length, and the sequence is randomly sampled from the 5
selected tokens. If there is a tie for the most frequent element, we randomly select a token from one
set and changes it to a token from the other set, thus ensuring that there is one unique answer.

Copy. For the copy task with unique tokens, we train on an alphabet size of 100. The length of
each example is sampled uniformly between 1 and the maximum training length, and the sequence is
randomly sampled from the alphabet without replacement. For the copy task with repeat tokens, we
use the same sampling procedure, but now on an alphabet size of 2.

Addition. For the addition task, we sample the length of each of the two numbers independently,
from 1 up to the maximum training length. We then pad the two numbers with 0 in the front such that
they have the same length. We pad the numbers with an extra 0 to allow for the potential of an extra
digit in the answer due to carry.

Parity. For the parity task, we sample the length of each parity sequence from 1 up to the maximum
training length. We then sample randomly from {1, 0} a sequence of the given length. We note that
the definition of length we use is based on the sequence length and not based on the number of 1s in
the sequence.

C Counterfactual Analysis on Count

In this section, we probe whether models trained on count actually learn the count algorithm that we
intuitively want. To reiterate, one simple algorithm that solves the count task is as follows. To predict
the next token:

1. Search for the most-recent SoS token, and read the following two numbers as a, b.
2. Read the previous token as x. If (x=='>'), output a. If (x==b), output EoS.
3. Otherwise, output (x+ 1).

9

Table 1: Experimental hyperparameters. All experiments use AdamW optimizer and cosine learning
rate schedule. Count and Copy use weight decay of 0.1 and grad clip of 0. Parity and Mode use
weight decay of 0.1 and grad clip of 1. Addition uses weight decay of 0 and grad clip of 1.

Task Model Size Train Iter Context Len Batch Size Learning Rate

Count 6 layer; 8 head; 64 emb 10000 256 128 1e-3 to 1e-5
Mode 6 layer; 8 head; 512 emb 10000 256 128 1e-3 to 1e-6
Copy 6 layer; 8 head; 512 emb 100000 512 128 1e-4 to 1e-6
Addition 6 layer; 8 head; 512 emb 30000 512 64 1e-4 to 0
Parity 6 layer; 8 head; 512 emb 10000 512 256 1e-3 to 1e-6

Since there is no easy way to formally check if the Transformer model learns this exact algorithm
internally, we employ the simple heuristic of running the model on counterfactual examples. The
allows us to stress test the models behavior and see if it performs the expected algorithmic steps in an
input-agnostic way. To do so, we performance inference on randomly generated input sequences that
are designed to test the model in four ways:

1. The model should always output the start token in the prompt (a) as the first output.
(Figure 3a)

2. The model should always output EoS following a token that matches the ending token
in the prompt (b). (Figure 3b)

3. In all other settings, the model should increment the previous token by 1. (Figure 4a)
4. The model should not output EoS prematurely. (Figure 4b)

We create the counterfactual dataset by sampling start and end tokens of varying distances, then
generate a sequence of random tokens of the length specified by the distance between the start and
end token. We then pass this sequence through a trained model and look at its predictions at each
token position. The goal of the four proposed tests on random sequences is to probe whether the
model learned the expected algorithmic behavior rather than learning something that would strongly
depend on statistics of the training distribution. We sample examples for in-distribution lengths and
out-of-distribution lengths based on the training distribution of each model. For simplicity, we choose
1 model with strong length generalization performance from each maximum training length setting.
The performance on each test is shown in Figure 3 and Figure 4.

We see that for the start-on-first test and the increment-by-1 test, all models exhibit near perfect
performance both in- and out-of-distribution. For the end-on-last test, we see that models trained with
shorter lengths do not learn to robustly output EoS on long test sequences once the ending condition
is met. However, on models trained on longer sequences (and has better length generalization), this
behavior is more robust. Lastly, when we measure the percentage of EoS which are correct, we see
that models that do not have strong generalization also fails to output EoS only at the appropriate time.
This failing is observed on both in-distribution and out-of-distribution lengths. This suggests that
the failures of length generalization can be attributed to prematurely outputting an EoS token before
the full length of the sequence is outputted. Overall, we observe strong correspondence between the
model’s behavior and what we would expect from the correct algorithm. This lends credence to the
intuition that the model learns the correct RASP-L program and generalizes because of it.

D Case Studies on RASP-L Algorithms

In this section, we experimentally evaluate 3 tasks that have simple RASP-L programs and 3 tasks that
do not. We show that RASP-L representability is correlated with length generalization performance.
The three easy tasks we consider are: count, mode, and copy with unique tokens. We provide the
RASP program for these tasks in Appendix G.4 (Listings 3, 4, and 5, respectively). Detailed training
procedures and hyperparameters are provided in Appendix B.

Count. We described the count task in the Introduction and showed results in Figure 1b. This task
can be solved by a RASP-L program that essentially translates the pseudocode in the Introduction
(defails in Listing 3). We find that models trained on count can generalize near perfectly to double

10

0 20 40 60 80 100 120 140 160
Max Train Length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 o
f S

ta
rt-

on
-F

irs
t

IID length
OOD Length

(a) Counterfactual test of starting on first token

0 20 40 60 80 100 120 140 160
Max Train Length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 o
f E

nd
-o

n-
La

st

IID length
OOD Length

(b) Counterfactual test of ending on last token

Figure 3: We measure performance of models trained on the count task on counterfactual tests
designed to evaluate whether the model simulates the correct generalizing algorithm on random
sequences far out-of-distribution. We see that models always output the start token as the first output,
but do not always output the EoS token once the ending token has been outputted.

0 20 40 60 80 100 120 140 160
Max Train Length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 o
f I

nc
re

m
en

t-b
y-

1

IID length
OOD Length

(a) Counterfactual test of increment-by-1

0 20 40 60 80 100 120 140 160
Max Train Length

0.0

0.2

0.4

0.6

0.8

1.0
%

 o
f C

or
re

ct
 E

oS
 O

ut
pu

ts

IID length
OOD Length

(b) Counterfactual test of the percentage of EoS outputs
which are correct

Figure 4: We measure performance of models trained on the count task on counterfactual tests
designed to evaluate whether the model simulates the correct generalizing algorithm on random
sequences far out-of-distribution. We see that models almost always increments the previous token by
1, no matter what the previous sequence is. However, it sometimes output the EoS token prematurely,
especially on lengths longer than seen in training. This likely explains failures of length generalization
observed in Figure 1b.

the training lengths. It is crucial that our training distribution contain samples ranging from length 1
to maximum training length, which adds diversity as we scale up training length. These factors are
necessary in preventing shortcut programs from being learned: no generalization is observed if we
train on sequences of all the same length.

Mode. The mode task identifies the most frequent element in a sequence. We constrain the
sequences such that the answer is unique. An example is: a b b c b a c b > b . Figure 5a shows
the results on mode, when training and testing on random sequences from an alphabet of 52 symbols.
We find that models trained on mode generalizes strongly to sequence lengths much longer than the
maximum training lengths. Interestingly, increasing training set complexity here does not result in
huge improvements in length generalization: Even models trained on sequence length up to 10 can
achieve a median test accuracy of 50% of sequences of length 60.

Copy with unique tokens. The copy task repeats the prompt sequence in the output. We constrain
the sequences to have all unique tokens in the prompt. An example is: a c d b > a c d b .
Figure 5b shows the results on copy with unique tokens. For models trained on sequence length up to
40, we find that they can generalize perfectly to length of 50. Intuitively, this task is easy because we

11

10 20 30 40 50
Additional Length over Max Train Length

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 E
M

Len=10
Len=20
Len=30
Len=40
Len=50
Len=60
Len=70
Len=80

(a) Length generalization on mode

10 20 30 40
Max Train Length

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 E
M

 a
t L

en
gt

h
50

Unique Tokens
Repeat Tokens

(b) Copy task

10 20 30 40
Max Train Length

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y
at

 L
en

gt
h

50

No Scratch
W/ Scratch (Final)
W/ Scratch (EM)

(c) Mode task (w/ scratchpad)

Figure 5: (a) Length generalization performance for the mode task. All models generalize perfectly to
10 or more additional tokens at test time. (b) Performance on copy tasks for test sequences of length
50, and varying train lengths. Copying unique tokens makes length generalization much easier, since
it can be solved by an induction head. (c) Performance on mode task for test sequences of length 50,
and varying training lengths. The scratchpad hurts in this setting (both final answer accuracy and
exact match), since it is not computable by a short RASP-L program.

can leverage something called an “induction head” (Olsson et al., 2022). Induction heads work by
identifying a previous instance of the current token, find the token that came after it, and predict the
same completion to the current token. Olsson et al. (2022) found that induction heads are reliably
learned even by simple Transformers, and conjectured them to be a component of what enables
in-context learning in LLMs. Induction heads are simple to implement in RASP-L, as the induct
function. Thus, the next token can be generated by simply using an induction head on the current
token, since all tokens are unique. This is exactly what the RASP-L program does, in Listing 5.

Next, we identify three tasks that do not admit simple RASP-L solutions: addition, parity, and
copy with repeating tokens. We discuss reasons why Transformer models struggle to generalize on
these tasks by highlighting the operations these algorithms require, but which are unnatural for a
Transformer to represent.

Addition & Parity. Both these tasks have been studied as difficult tasks for Transformers: models
trained from scratch show little to no length generalization on addition (Nye et al., 2021; Lee et al.,
2023) and parity (Bhattamishra et al., 2020; Chiang & Cholak, 2022; Ruoss et al., 2023; Delétang
et al., 2023), and even pretrained LLMs cannot solve these tasks robustly (Brown et al., 2020;
Chowdhery et al., 2022; Anil et al., 2022) without careful prompting (Zhou et al., 2022b).

Indeed, addition is also difficult to write in RASP-L. To see why, consider the standard addition
program shown in Appendix G.4.6. This algorithm requires the carry value to be propagated from
least- to most-significant digit, but this cannot be easily simulated due to causal masking. Moreover,
the for-loop iteration is not allowed in RASP-L. A particularly challenging aspect is the index-related
operations. The standard addition algorithm requires index-arithmetic (e.g. finding the middle of
the prompt sequence) and precise indexing operations (e.g. look up the corresponding summand
digits for the current output digit). It is nontrivial to construct positional embeddings that allow the
model to precisely access the nth element in a sequence for any n ∈ N, in a numerically stable way.
It is even more difficult to construct embeddings that allow index-arithmetic, e.g. transforming the
encoding of n to the encoding of ⌊n/2⌋, in a way that works globally for all n ∈ N. Such operations
are forbidden in RASP-L, as they are typically not learned in a global, length-generalizing way. Due
to these obstructions, we are unable to derive a RASP-L program for this task.

Similarly, parity without any scratchpad requires operations that are forbidden under RASP-L. Since
a Transformer cannot update its state sequentially, it must solve parity with parallel operations only.
Intuitively, this requires taking the sum of the entire sequence, then determining the parity of the
sum. This cannot naturally be computed in a numerically stable way for an arbitrarily large sums.
Moreover, we cannot expect to learn a ‘sum’ operation which generalizes to numbers larger than the
training sequences. Indeed, many works have shown that a Transformer cannot even fit the training
set of parity sequences over some minimal length (Bhattamishra et al., 2020; Chiang & Cholak,
2022).

12

Under our experimental settings, we find that no length generalization is observed for both addition
and pairity tasks: test performance does not exceed random chance when evaluated on examples 5 or
more tokens longer than the training set.

Copy with repeating tokens. For this task, we constrain the sequences to consist only of 2 possible
tokens. An example is: a a b a > a a b a . Since the tokens are no longer unique, the induction-
head is no longer helpful. Instead, the model must perform precise index-arithmetic, which is difficult
for the same reason that indexing is difficult in addition. We show in Figure 5b that models completely
fail to generalize to longer lengths on this task.

E Why Scratchpads Help

In this section, we provide more examples of leveraging the RASP-Generalization Conjecture to
understand when and how scratchpads can improve generalization.

Scratchpad helps generalization on parity. The natural algorithm for parity is to iterate through
all input tokens, updating some internal state along the way. Unfortunately, this algorithm cannot be
directly implemented in RASP-L, because RASP-L does not allow loops— fundamentally because
one forward-pass of a Transformer cannot directly simulate n sequential iterations of the loop.
However, if the internal state is written on the scratchpad each iteration, then the Transformer only
needs to simulate one iteration in one forward-pass, which is now possible.

We leverage this intuition to design a scratchpad for parity. Similar to addition, we add index
hints to the prompt to simplify the indexing operation. In the scratchpad output, we locate in-
dex hints that precede each 1 in the prompt, and keep track of the running parity with symbols
+ (even) and − (odd). The last output token corresponds to the final answer. For example:
a 0 b 0 c 1 d 1 e 0 > + c - d + . Figure 2c shows the exact match performance of the

proposed parity scratchpad. We find that some of the runs trained with sequences up to 30 in length
can generalize perfectly on sequences of length 50. When training length reaches 40, all models
achieve perfect length generalization on length 50. Lastly, in Figure 6b, we compare the training
curves of parity using various scratchpads, and we show that training speed is also correlated with
how difficult the task is under RASP-L. Details can be found in Appendix F. To our knowledge, these
results demonstrate the first instance of strong length generalization on parity for Transformer models
trained from scratch.

Scratchpad hurts generalization on mode. Now we consider the mode task and look at how
scratchpad might affect a task that a Transformer is naturally amenable to. A natural algorithm one
might come up with is to calculate the counts of each unique token in the sequence, then output
the token with the maximum count. To encourage the model to learn this algorithm, we might
utilize the following scratchpad, where we output the frequency of each token in ascending order:
a b b c b a c b > 2 a 2 c 4 b b . The last token in the scratchpad is then the correct

answer. However, although this scratchpad provides more supervision for what algorithm the model
should learn, it is a more difficult task when considered in terms of RASP-L. Finding and comparing
the frequency is simple to do internally, but converting this implicit representation into an integer
token adds additional complexity. We show in Figure 5c that the scratchpad performs significantly
worse than no scratchpad, both when measured on exact match and also on the accuracy of the final
answer.

Nonetheless, one may consider the given scratchpad, which orders the intermediate counts in order
of frequency, to be overly demanding. This scratchpad requires the model to know the order of the
frequencies before outputting them. Another variant of this could output the scratchpad in order
of appearance in the original sequence. Moreover, we can output the token first before outputting
their count, which may help the model reference the relevant token for this step. An example is
a b b c b a c b > a 2 b 4 c 2 b .

The performance of this scratchpad is shown in Figure 7. We see that utilizing this scratchpad still
results in much worse length generalization performance than using no scratchpad.

13

0 5000 10000 15000 20000 25000 30000
Train Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
EM

 (M
ax

 L
en

=4
5)

Reverse Addition
Forward Addition

(a) Training speed comparison for addition with index
hints

0 2000 4000 6000 8000 10000
Train Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
EM

 (M
ax

 L
en

=4
5)

Easy Scratchpad
Hard Scratchpad
No Scratchpad

(b) Training speed comparison for parity with different
scratchpads

Figure 6: We compare the training speed as measured by exact match on a maximum training length
of 45. (a) compares the convergence speed of models trained on forward addition vs reverse addition
with index hints. (b) compares the convergence speed of models trained on different scratchpads on
parity.

F Training Speed

The RASP Generalization Conjecture suggests that simple-to-represent programs are also more likely
to be learned. Intuitively, we should expect that simple-to-represent programs also exhibits faster
optimization during training. In this section, we evaluate different strategies of presenting the addition
and the parity task, and see whether the training speed of these variants correspond to the simplicity
of their corresponding RASP-L programs (and by extension their length generalization performance).

As discussed in Section 4, reverse addition simplifies the function that the model needs to learn
when compared to forward addition. Figure 6a shows the training curves for each of these settings.
Consistent with intuition, we see that reverse addition converges more quickly than forward addition.

For the parity task, we introduce an additional scratchpad format for comparison. This scratchpad
outputs the sum-mod-10 of the parity sequence before outputting the final parity. An example
is 0 0 1 1 0 > 2 , 0 . This scratchpad does not simplify the problem as much as the main
scratchpad presented in Section 4 because it does not leverage the autoregressive inference to process
the task sequentially. However, it is still simpler than parity without any scratchpad because it helps
to simplify the final operation of getting the parity of the sum. Instead of doing this internally, the
model can now reference the output of the sum-mod-10 and learn a simple mapping between that
and the corresponding parity. Figure 6a shows the training curves for each of these settings. We see
that the main scratchpad (“Easy Scratchpad”) optimizes much more quickly than the sum-mod-10
scratchpad (“Hard Scratchpad”). We also observe that Easy Scratchpad exhibits significantly stronger
length generalization than Hard Scratchpad, shown in Figure 7b. Both scratchpads optimizes much
better than parity with no scratchpad, which is unable to even fit the training set and demonstrates no
length generalization.

G RASP Details

G.1 RASP: A Primer

The original RASP language can be thought of as a domain-specific-language for specifying Trans-
former weights, in human-readable form (Weiss et al., 2021). Importantly, RASP was designed for
the computational model of Transformers, so short RASP programs define functions which are “easy
to represent” for Transformers. Although RASP was conceived as a separate language with its own
syntax, we can also realize RASP as a restricted subset of Python where only a few operations are
allowed. We show how to do this explicitly in Appendix G.4.1, and just include a few examples here.
Every RASP program accepts an input sequence of length n, for all n ∈ N, and returns an output
sequence of the exact same length— just like a Transformer.

14

10 20 30 40
Max Train Length

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y
fo

r L
en

gt
h

50 No Scratch
W/ Scratch (Final)
W/ Scratch (EM)

(a) Mode using scratchpad ordered by appearance

25 30 35 40 45
Max Train Length

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 E
M

 a
t L

en
gt

h
50

(b) Parity with sum-mod-10 scratchpad

Figure 7: (a) compares test performance of mode with or without scratchpad. In this case, we use the
scratchpad presented in order of appearance. We see that no scratchpad significantly outperforms
scratchpad, whether measured on the final answer accuracy or the exact match of the entire scratchpad
output. (b) illustrates the generalization performance for parity with scratchpad on length 50. We see
that no runs show significant length generalization in this setting.

30 35 40 45
Max Train Length

0.0

0.2

0.4

0.6

0.8

1.0

Fo
rw

ar
d

EM
 a

t L
en

gt
h

50

(a) Forward addition on easy carry examples

30 35 40 45
Max Train Length

0.0

0.2

0.4

0.6

0.8

1.0
Re

ve
rs

e
EM

 a
t L

en
gt

h
50

(b) Reverse addition on easy carry examples

Figure 8: Length generalization on addition with index hints. Each diamond shows the performance
of one of 20 runs, illustrating the spread of different training runs. (a) illustrates the generalization
performance for forward addition with index hints on easy carry examples of length 50. (b) illustrates
the generalization performance for reverse addition with index hints on easy carry examples of length
50. Easy carry examples consist of addition questions where the two numbers are sampled randomly
and independently, which is the setting considered in prior works studying addition. We see that both
settings demonstrate strong length generalization, thus demonstrating the usefulness of the index
hints.

The core operations allowed in RASP are: arbitrary elementwise operations over sequences (map and
seq_map), and a very particular type of non-elementwise operation kqv, which simulates a causal
Attention layer. Moreover, no control flow is allowed; all programs must be straight-line programs,
with no branching or loops.

For example, suppose we want to write a causal RASP program which always outputs the second-
to-last token of the input sequence, e.g. in Python: def f(x): return x[-2]. To represent this
function in a causal sequence-to-sequence manner, we need to take in the sequence x and output the
same sequence but shifted by 2. In pure Python, the function is lambda x: [0]*2 + x[2:], where
we pad the shifted x with 2 tokens in the front to maintain the same dimension. This lambda function
can be implemented in RASP as: lambda x: kqv(indices(x)+2, indices(x), x, equals).
This RASP program uses the fact that positional embeddings can be specially constructed such that
shift-by-two is an elementwise operation on these embeddings. Then, kqv function simulates an
attention layer where the current position indices (as query) are matched to the shifted-by-2 indices
(as key), and applied to input sequence x (as values).

15

Crucially, since we study autoregressive decoder-only Transformers, we must use the causal version
of RASP, where all seq-to-seq operations are executed causally. Moreover, while RASP programs
define sequence-to-sequence functions, we interpret them as sequence-to-token functions, by taking
the last token of output sequence as the next-token prediction (in the standard autoregressive manner).
This setting differs from most prior literature on RASP, which typically consider non-causal models,
and these differences significantly change the nature of RASP programming.

G.2 RASP Specification

Here we describe how to realize RASP as a restricted subset of Python (with numpy). First, every
RASP program accepts an input sequence of length n, for arbitrary n ∈ N, and returns an output
sequence of the exact same length— just like a transformer. The restrictions on Python are: All
variables are either numpy arrays of length n (“sequences”), or binary matrices in {0, 1}n×n (“se-
lectors”). No control flow is allowed; all programs are straight-line programs, with no branching or
loops. Finally, every line of the program must be a call to either one of the core functions defined in
Listing 1, or to another RASP program.

It is easy to confirm that this is equivalent to the original presentation of RASP in Weiss et al. (2021).

G.3 RASP-L: Learnable RASP

The original RASP technically allows for certain operations which are possible to represent, but
not “easy” to represent or learn. For example, any arbitrarily-complex tokenwise operation R → R
is allowed. To disallow such pathologies, we define a “learnable” subset of RASP which we call
RASP-L. RASP-L enforces the following additional restrictions on RASP.

First, all non-index values, including the input and intermediate variables, must be of type int8. This
constraint handles issues with both infinite-precision and with learnability of the tokenwise operations
(since all tokenwise functions now have small finite domains and co-domains, int8 → int8, and so
can be easily memorized). Although disallowing floating-point operations and unbounded numbers
may seem like a strong restriction, we find these are not necessary for most symbolic programs.

Moreover, token indices are treated specially. Standard RASP allows arbitrary arithmetic opera-
tions on indices, such as division-by-two: i 7→ ⌊i/2⌋. However, transformers must decode index
information from their positional embeddings, so any RASP-L operation on indices must be “easy”
to perform on the appropriate positional embeddings. We find that empirically, such operations
involving index-arithmetic are often not learned in a length-generalizing manner. This is potentially
because it is difficult to learn globally valid arithmetic structures (such as division by two) from
essentially local examples, i.e. short contexts. To reflect this in RASP-L, we only allow the following
operations on indices: order comparisons with other indices, and computing successor/predecessor.
Formally, the RASP-L core function indices(x) returns a special type IndexInt, which can take
values in N, but only allows these restricted operations. That is, we allow adding 1 to an IndexInt,
but we do not allow adding two IndexInts, nor casting between IndexInt and int8.

There is one additional restriction on RASP, involving the “selector width” core operation. Selector-
width in standard RASP returns the number of prior elements that are selected by a binary Attention
matrix, for each token position. The return type of Selector-width in RASP-L inherits from IndexInt:
thus it can represent unbounded numbers of selected elements, but can only operate on them in
restricted ways. Moreover, every call to sel_width in RASP-L returns a new type which inherits
from IndexInt, and these types cannot be compared to each other. That is, the sequences returned
by two different calls to sel_width are incomparable. The reason for these restrictions, which
may otherwise seem contrived, is that sel_width can be used to simulate indices, by calling it
on the all-ones selector matrix. Thus, we must restrict the output of sel_width sufficiently to not
allow bypassing the intended restrictions on index-arithmetic. There may also be more mechanistic
motivations for such restrictions, since the Transformer implementation of selector width requires
weights which grow linearly with sequence length (Lindner et al., 2023).

16

def map(x, func):
return np.array([func(xi) for xi in x])

def seq_map(x , y, func):
return np.array([func(xi, yi) for xi, yi in zip(x,y)])

def select(k, q, pred):
s = len(k)
A = np.zeros((s, s), dtype=bool)
for i in range(s):

k_index <= q_index due to causality
for j in range(i+1):

A[i, j] = pred(k[j], q[i])
return A

def sel_width(A):
return np.dot(A, np.ones(len(A)))

def aggr(A, v):
out = np.dot(A, v)
norm = sel_width(A)
return np.divide(out, norm, out=np.zeros_like(v), where=(norm != 0))

def indices(x):
return np.arange(len(x))

def fill(x, const):
return np.array([const] * len(x))

Convenience function:
def kqv(k, q, v, pred):

return aggr(select(k, q, pred), v)

Listing 1: RASP-L core functions.

forward-orderreverse-order

1 3 6 8 3

+ 2 6 3 4 5

1

+++

ca
rry

1

+
9 9 12 8

+

 0 0 2 8

+

ca
rry

current carry is simple to compute using
previous output:

• direct carry if prev digit sum > 9

• indirect carry if prev digit sum = 9 & prev

output = 0

current carry depends on all
subsequent inputs

if the next output is not yet known

output

…

1 3 6 8 3

+ 2 6 3 4 5

3

? ?

+
ca

rry
?

ca
rry

?

ca
rry

?

output

? Intermediate VariablesIntermediate Variables

Figure 9: Intuition for why reverse order addition is simpler to implement in RASP than forward
order. In reverse order, the carry calculation is simple with the help of the most recent output digit,
which acts like a built-in scratchpad. In forward order, the carry requires a more complex calculation
involving all remaining input digits. This intuition is reflected in the RASP-L program for forward
addition, which is much longer than that of reverse addition (see Listings 7 and 8).

G.4 RASP Programs

In this section, we provide the RASP-L core (1) and library (2); RASP-L programs for the tasks
discussed in the paper, namely counting (3), mode (4), copy-with-unique-tokens (5), addition with
reverse-order and index-hints (7); and a naive non-RASP addition algorithm (6).

17

def where(condition, x_if, y_else):
equivalent to np.where(condition, x_if, y_else)
x_masked = seq_map(x_if, condition, lambda x, m: x if m else 0)
y_masked = seq_map(y_else, condition, lambda y, m: y if not m else 0)
return seq_map(x_masked, y_masked, lambda x, y: x if y == 0 else y)

def mask(x, bool_mask, mask_val=0):
equivalent to x*bool_mask + default*(~bool_mask)
return where(bool_mask, x, fill(x, mask_val))

def cumsum(bool_array):
returns number of previous True elements in bool_array
return sel_width(select(bool_array, bool_array, lambda k, q: k))

def shift_right(x, n, default=0):
shifts sequence x to the right by n positions
return kqv(indices(x) + n, indices(x), x, equals, default=default)

def maximum_xv(x, v):
returns out[i] = v[argmax(x_{<= i})]
which_gt = select(x, x, gt)
num_gt = sel_width(which_gt)
highest = (num_gt == 0)
idx_hold = cumsum(highest) # zero-order hold of the number of the highest incides so far.
idx_hold_if_highest = seq_map(idx_hold, highest, lambda i, h: i if h else 0)
z = kqv(idx_hold_if_highest, idx_hold, v, equals)
return z

def maximum(x):
return maximum_xv(x, x)

def minimum(x):
return -maximum(-x)

def argmax(x):
return maximum_xv(x, indices(x))

def argmin(x):
return argmax(-x)

def num_prev(x, queries):
output[i] = number of previous elements of x equal to queries[i], inclusive
return sel_width(select(x, queries, equals))

def firsts(x, queries, default=0):
find the index of the first occurrence of each query[i] in x
out[i] := np.flatnonzero(x[:i+1] == queries[i]).min()
NULL_VAL = -1 # special token, cannot appear in x
has_prev = kqv(shift_right(x, 1), x, fill(x, 1), equals) # if x[i] has occured previously
first_occ = 1-has_prev
first_occ_only = where(first_occ, x, fill(x, NULL_VAL)) # out[i] = x[i] if first_occ[i] else NULL_VAL
return kqv(first_occ_only, queries, indices(x), equals, default=default)

def find_last_tok(x, tok):
finds the index of the last occurrence of tok in sequence x (causally, inclusive)
toks = fill(x, tok)
matches = (x == toks)
nprev = sel_width(select(x, toks, equals))
nprev_matches_only = mask(nprev, matches) # zero-out non-toks
idxs = kqv(nprev_matches_only, nprev, indices(x), equals)
return idxs

def index_select(x, idx, default=0):
indexes into sequence x, via index sequence idx
i.e. return x[idx] if idx[i] <= i else default
return kqv(indices(x), idx, x, equals, default=default)

def first_true(x, default=-1):
returns the index of the first true value in x
seen_true = kqv(x, fill(x, 1), fill(x, 1), equals, default=0)
first_occ = seq_map(seen_true, shift_right(seen_true, 1), lambda curr, prev : curr and not prev)
return kqv(first_occ, fill(x, 1), indices(x), equals, default=default)

def induct(k, q, offset, default=0, null_val=-999):
get value of k at index of first occurrence of q (if found) plus offset
null_val is a special token that cannot appear in k or q; used to prevent accidental matches
indices_to_copy = firsts(shift_right(k, offset, default=null_val), q, default=null_val)
copy values of k at indices_to_copy (use requested default for invalid indices)
copied_values = index_select(k, indices_to_copy, default=default)
return copied_values

Listing 2: RASP-L library functions.

18

def count(seq):
First, find the index of most-recent START_TOK (begninng of current sequence)
start_idx = find_last_tok(seq, START_TOK)

Then, compute the start/end numbers of the current sequence
start_nums = index_select(seq, start_idx+1)
end_nums = index_select(seq, start_idx+2)

Bool arrays: whether we're predicting the first / last tokens of the current sequence
pred_first_pos = seq_map(indices(seq), start_idx+2, equals)
pred_final_pos = (~pred_first_pos) & seq_map(seq, end_nums, equals)

next_tok = where(pred_first_pos, # if predicting the first token:
start_nums, # next_tok = starting num
where(pred_final_pos, # else if predicting the final token:

full(seq, END_TOK), # next_tok = END_TOK
seq + 1)) # else: next_tok = prev_tok + 1

return next_tok

Listing 3: RASP-L program for Count.

def mode(x):
num_prev_matching = sel_width(select(x, x, equals))
idx = argmax(num_prev_matching)
return index_select(x, idx)

def binary_mode(x):
num_prev_zeros = sel_width(select(x, fill(x, 0), equals))
num_prev_ones = sel_width(select(x, fill(x, 1), equals))
mode_val = seq_map(num_prev_ones, num_prev_zeros, gt)*1
return mode_val

Listing 4: RASP-L program for Mode.

def copy_unique(seq):
return induct(seq, seq, offset=1)

def copy_unique_ar(x):
START, END = -1, -2
prompt = np.concatenate(([START], x, [END], [START]))
seq = prompt.copy()

while seq[-1] != END:
next_tok = copy_unique(seq)[-1]
seq = np.concatenate((seq, [next_tok]))

return seq

copy_unique_ar(np.array([8, 3, 4, 2, 1, 5]))
>> [-1 8 3 4 2 1 5 -2 -1 8 3 4 2 1 5 -2]

Listing 5: RASP-L program for Copy with unique tokens.

def add_illegal(inp): # inp = array of zero-padded digits of x0, x1; returns z = x0 + x1
num_digits = int(len(inp)/2) # ILLEGAL: no division on index types
z = np.zeros(num_digits)
carry = 0
reversed_range = range(num_digits)[::-1] # ILLEGAL: reversal is non-causal
for i in reversed_range: # ILLEGAL: no for loops

x0, x1 = inp[i], inp[num_digits+i] # ILLEGAL: variables cannot be used as indices
digit_sum = x0 + x1
z[i] = (digit_sum + carry) % 10
carry = 1 if digit_sum > 9 else 0

return z

Listing 6: An addition program that is illegal in RASP-L for several reasons.

19

1 ## Constants and helper functions
2 START_PROMPT = -1
3 PLUS = -2
4 EQUALS_SIGN = -3
5 END_RESPONSE = -5
6 NONE = -88
7
8 def mask_between_tokens(seq, tok0, tok1):
9 seen_tok0 = has_seen(seq, full(seq, tok0))

10 seen_tok1 = has_seen(seq, full(seq, tok1))
11 ind_between = seq_map(seen_tok0, seen_tok1, lambda a, b: a and not b) # ind(tok0) <= (*) < ind(tok1)
12 return ind_between
13
14 def _add_safe(x, y):
15 return x + y if (x >= 0) else x # preserve index-hints
16
17 ## Next-token function
18 def next_tok_rev_addition_hinted(seq):
19 prompt_mask = 1-has_seen(seq, full(seq, EQUALS_SIGN))
20 second_summand_mask = mask_between_tokens(seq, PLUS, EQUALS_SIGN)
21 prompt = mask(seq, prompt_mask)
22
23 # let's first align the 1st summand with the second.
24 other_summand_digit = induct(k=prompt, q=shift_right(prompt, 1), offset=1)
25 pairsums = seq_map(seq, other_summand_digit, _add_safe) # this aligns pairsums with the 2nd summand
26 pairsums = mask(pairsums, second_summand_mask, NONE)
27 pairsums_nh = mask(pairsums, (seq >= 0), NONE) # no hints: only keep digits
28
29 curr_output_digit = shift_right(seq, 1)
30 curr_pairsum = induct(pairsums, shift_right(seq, 2), offset=1) # pairsum that generated curr_output_digit
31 next_pairsum = induct(pairsums, seq, offset=1)
32
33 ## START CHANGES
34 direct_carry = curr_pairsum > 9 # previous sum gives carry
35 indirect_carry = (curr_pairsum == 9) & (curr_output_digit == 0) # previous sum is 9 and earlier sum gave carry
36 next_tok_gets_carry = direct_carry | indirect_carry
37
38 # (simple) index-hint computations:
39 final_hint = full(seq, -100) # final hint output is always -100
40 first_hint = induct_prev(seq, full(seq, EQUALS_SIGN), offset=-2) # first hint is 2 places before '='
41 next_hint = shift_right(seq, 1) + 1
42 eos = (next_hint > final_hint)
43 ## END CHANGES
44
45 next_tok = next_pairsum
46 next_tok += next_tok_gets_carry
47 next_tok = next_tok % 10
48
49 ## Finally, handle the case of outputing index-hints
50 next_tok_is_index_hint = (seq > -100) # all index-hints are <= -100
51 eos = (eos & next_tok_is_index_hint)
52
53 next_tok = where(next_tok_is_index_hint, next_hint, next_tok)
54 next_tok = where(eos, full(seq, END_RESPONSE), next_tok)
55 next_tok = where((seq == EQUALS_SIGN), first_hint, next_tok)
56 return next_tok

Listing 7: RASP-L program for addition, with output in reverse order, and index-hints. See Section 4
for details on prompt format. For addition in forward order, the highlighted codeblock is replaced
with Listing 8.

20

1 ## START CHANGES
2 gives_carry = tok_map(pairsums_nh, lambda _x: 1 if _x > 9 else 0)
3 z = cumsum((pairsums_nh != 9) & (pairsums_nh != NONE))
4 u = mask(z, gives_carry, mask_val=NONE)
5 v = tok_map(u, lambda _x: _x - 1)
6 chain_end_idxs = firsts(z, v, default=NONE) # (left) ending indices of carry-chain
7
8 curr_tok_got_carry = ((curr_pairsum % 10) != curr_output_digit)
9 next_tok_inside_carry_chain = (next_pairsum == 9) & curr_tok_got_carry

10 # in the middle of a carry-chain? (NOTE: assumes the pairsums has first element 0)
11
12 next_tok_idx = kqv(pairsums, seq, indices(seq), equals) + 1
13 # which answer-position are we at? (indices aligned to pairsums)
14 next_tok_chain_end = kqv(chain_end_idxs , next_tok_idx , full(seq, 1), equals, default=0)
15 # does the next_tok get a carry from the end of a carry-chain?
16 next_tok_gets_carry = next_tok_inside_carry_chain | next_tok_chain_end
17
18 # (simple) index-hint computations:
19 final_hint = induct_prev(seq, full(seq, EQUALS_SIGN), offset=-2) # final hint is 2 places before '='
20 first_hint = full(seq, -100)
21 next_hint = shift_right(seq, 1) - 1
22 eos = (next_hint < final_hint)
23 ## END CHANGES

Listing 8: The required patch to Listing 7, to produce a program for addition in forward order. This
code replaces the highlighted block in Listing 7. See Section 4 for details on prompt format.

21

	Introduction
	Main Conjecture
	RASP-L: What Algorithms Can Transformers Learn?
	Application: Why Scratchpads Help
	Additional Related Works
	Additional Experimental Details
	Counterfactual Analysis on Count
	Case Studies on RASP-L Algorithms
	Why Scratchpads Help
	Training Speed
	RASP Details
	RASP: A Primer
	RASP Specification
	RASP-L: Learnable RASP
	RASP Programs

