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Abstract

Large Language Models (LLMs) have shown promising capabilities in using exter-
nal tools. However, existing approaches rely on fine-tuning or in-context learning
to use tools, which make syntactic mistakes and are difficult to generalize. In this
paper, we propose TOOLDEC, a finite-state machine-guided decoding algorithm
for tool-augmented LLMs. TOOLDEC eliminates tool-related errors by ensuring
valid tool names and type-conforming arguments. Furthermore, TOOLDEC enables
LLM to effectively select tools using only the information contained in their names,
with no need for tool-specific fine-tuning. Our experiments on multiple word prob-
lem datasets show that TOOLDEC reduces syntactic errors to zero, consequently
achieving significantly better performance and as much as a 2x speedup. We also
show that TOOLDEC achieves superior generalization performance on unseen tools,
performing up to 8x better than the baseline.

1 Introduction

Augmenting Large Language Models (LLMs) with external tools (Mialon et al., 2023) enables them
to solve complex problems. The performance of a tool-augmented LLM depends on its ability to
make three key decisions—when to use a tool, which tool to use, and how to invoke a tool. Existing
approaches learn to make these decisions through fine-tuning or in-context learning. However, these
approaches still make syntactic mistakes in tool calls, calling non-existent tools and passing invalid
arguments. Furthermore, prior approaches do not generalize to unseen tools well. They either need
in-context documentation or extra training data to adopt new tools.

To address these issues, we propose TOOLDEC, a decoding algorithm guided by a finite-state machine
(FSM) to ensure LLMs invoke tools properly. TOOLDEC transitions from state to state as decoding
progresses. At each decoding step, TOOLDEC only samples from a subset of tokens allowed by the
current state. The FSM that gives guidance to TOOLDEC is constructed from tool documentation
and API signature so that the machine precisely represents the grammar of tool calls. In this way,
TOOLDEC is able to always generate syntactically correct tool calls. Figure 1 illustrates that an LLM
enhanced by TOOLDEC is able to generate the right function call multiply with precise arguments.

Furthermore, TOOLDEC generalizes to new tools much more efficiently. TOOLDEC automatically
constructs a finite-state machine from a new tool’s API signature and adds it to the existing FSM.
TOOLDEC is then able to call new tools without fine-tuning on extra data or in-context tool doc-
umentation. In Figure 1, both product and multiply sound plausible for the scenario, but only
multiply is a given tool. Since TOOLDEC only calls existent tools, it won’t hallucinate a plausible
yet non-existent tool and can rely on the tool names to find the right tool.
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 Available Tools: multiply(a, b) computes the product of numbers a and b.
Question: The diameter of a circle is 123, π ≈ 3.14, what's its perimeter?

Its perimeter is pi
x 123 = 196

 Its perimeter is
 product(3.14,123)

 Its perimeter is
 multiply(pi, 123)

 Its perimeter is multiply
 (3.14,123)=386.22

LLM LLM + Tool, without ToolDec LLM + ToolDec

Generated Wrong Answer Non-Existent Tool Invalid Tool Argument Correct Tool Call

Figure 1: LLMs using external tools. LLMs without tools cannot multiply, so they just generate a
probable next token. Tool-augmented LLMs can access external tools like multiply, but they may
call a non-existent tool like product and pass invalid arguments like the string “pi”. Our proposed
TOOLDEC always generates tool calls without syntax errors.

Our extensive experiments show TOOLDEC eliminates all syntax errors and hallucinated tool names,
resulting in better accuracy and as much as 50% less inference time. Our results also indicate that
TOOLDEC generalizes efficiently without extra training data, achieving 8x better than baselines on
mathematical reasoning with 9 out of 13 tools unseen.

2 TOOLDEC: LLM Tool Use via Finite-State Decoding

Motivated by the fact that a finite state machine can verify the syntax of a tool call, we propose
TOOLDEC, a constrained decoding algorithm guided by an FSM. During each decoding step, the
model samples from a subset of the vocabulary that only contains syntactically correct tokens. The
FSM that specifies the token subsets can be constructed from the tool documentation. For example,
in Figure 2, an FSM is constructed for functions add, exp, square and sqrt. Table 1 shows how
TOOLDEC answers the question “the side of a square is 5, what’s its area?” using the FSM. With the
guidance from the FSM, TOOLDEC achieves the following goals:

• Switching Modes. Switch between “text mode” when the model is free to generate any text and
“tool mode” when the model can only generate valid tool calls.

• Generating Tool Names. At the beginning of a tool call, only generate correct existent tool names
from a pre-defined list of tools.

• Passing Valid Arguments. Only pass type-conforming arguments to the tool.

2.1 Finite-State Decoding
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Figure 2: A finite-state machine for TOOLDEC con-
structed for math functions add, exp, square, sqrt
that take integers as arguments. The names of the tools
are represented with a trie structure. “IntFSM” is a sub-
module that parses integers.

TOOLDEC is guided by a finite-state
machine (FSM). An FSM is a 5-tuple
(S, V, g, s0, R), consisting of a finite state
set S, an alphabet V , a transition function
g : S×V → S, an initial state s0 and a set
of accepting states R. In our case, S and
g are constructed from the tool signature.
V is the token vocabulary of the language
model. R corresponds to pre-defined to-
kens that can determine the LM has com-
pleted the task, like ‘<EOS>’.

At each decoding step t, TOOLDEC maintains a current state s. It can only generate the tokens
permitted by the FSM, i.e. the tokens for which g(s, ·) is defined. These permitted tokens are a subset
of V and we denote them as Vs. After generating one token a, TOOLDEC transits to another state
g(s, a) specified by the FSM transition function. At each step t, we do not directly sample from the
next token distribution P (xt|x1..t−1) calculated by the LLM. Instead, we zero out the probabilities
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Table 1: How TOOLDEC answers the question “the side of a square is 5, what’s its area?”

Step Generated Text Current State g Valid Next Tokens Next Token Next State

t Its s0 whole vocab. ‘area’ s0
t+ 1 Its area s0 whole vocab. ‘is’ s0
t+ 2 Its area is s0 whole vocab. ‘<T>’ s1
t+ 3 Its area is <T> s1 ‘add’, ‘exp’, ‘sq’ ‘sq’ s4
t+ 4 Its area is <T>sq s4 ‘uare’, ‘rt’ ‘uare’ s5
t+ 5 Its area is <T>square s5 ‘(’ ‘(’ s10
t+ 6 Its area is <T>square( s10 ‘+’,‘-’,‘1’-‘9’ ‘5’ s12
t+ 7 Its area is <T>square(5 s12 ‘0’-‘9’, ‘)’ ‘)’ s10
t+ 8 Its area is <T>square(5) s10 whole vocab. - -

of invalid tokens for which the transition function is undefined, and normalize the probabilities,

P̃ (xt = a|x1..t−1, s) =

{
P (xt=a|x1..t−1)∑

a′∈Vs
P (xt=a′|x1..t−1)

, g(s, a) is defined,

0, otherwise
.

The next token a is then sampled from the modified distribution P̃ (xt|x1..t−1, s). With the next
token, we move on to the next decoding step and transition the current state s to the next state g(s, a).
The pseudo-code of this algorithm is listed in Appendix A.2.

2.2 Constructing FSMs that Guarantee Syntactically Correct Tool Calls

Switching Modes. We use two states in the FSM to represent whether the language model is in text
mode or tool mode. The text mode is denoted by the initial state s0, during which the model is free
to generate any token in its vocabulary, i.e. Vs0 = V . The tool mode is denoted by state s1. The
model needs to output the special token <T> to switch from text mode to tool mode. Starting at s1 is
a smaller FSM that describes the grammar of tool calls.

Generating Tool Names. Once the model is at state s1, the next step would be to generate a new
tool call. To generate a correct tool call, the model needs to output the correct name for the tool and a
correct list of arguments. If every tool had a single-token name, we could simply define Vs1 as the set
of tool names. However, that is not the case for most tools. Many tools have long names that need
multiple tokens to represent. For example, the tool square in Figure 2 consists of two tokens— ‘sq’
and ‘uare’. Therefore, we need to construct an FSM for multi-token tool names.
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Figure 3: Inserting two more tool names
exp10 and expand into the trie. They are
represented by the two blue states s7 and s8.

We use a trie (Fredkin, 1960) to construct the FSM
for tool names. In Figure 2, the trie for tool names
consists of states {s1, s2, s3, s4, s5, s6}. A trie is a
rooted tree in which each edge represents a token. A
node in the tree represents a string that’s the concate-
nation of the path from the root to this node. In our
example, s4 represents the string “sq” and s5 repre-
sents the string “square”. All nodes in a trie represent
a set of strings. We construct a trie for the valid tool
names and make s1 the root of this trie.

To construct a trie, we insert all the strings into it
one by one. Inserting a string into a trie means going
from the root down the path made by the string and
creating new nodes when the next step in the path
does not exist. For example, we show how two more
tools names, exp10 and expand can be added to the
trie in Figure 3.

Note that the construction of trie depends on one assumption: no two tools have the same name.
While this is a reasonable assumption to make, there could be exceptions in real applications. In
that case, we could rewrite the tool names to include more details to disambiguate them. Rewriting
abstract and hard-to-understand tool names can also make it easier for the language model to select
them by name.
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Generating Syntactically Valid Tool Arguments. Tool arguments have specified types. Like
arguments in a program, they need to follow certain grammar rules. These rules can be specified by
finite-state machines. For example, the “IntFSM” in Figure 2 depicts a finite-state machine that only
accepts integer literals. For all arguments of a tool, we chain their corresponding FSMs together and
use the last state corresponding to the tool name as the initial state of this FSM chain. Note that in
practice, it’s not necessary to explicitly construct this FSM. Any grammar checker that tells the set of
valid next tokens suffice.

3 Experiments

Since the fine-tuning approach is very effective in math reasoning (Hao et al., 2023) , our main
experiments focus on demonstrating how TOOLDEC can eliminate all syntax errors and hallucinated
tool names while enabling the fine-tuned LLM to generalizes efficiently without extra training data.

3.1 Baseline and Benchmark

ToolkenGPT (Hao et al., 2023) represents each tool as a special token and optimizes only the
embedding of the tool tokens for tool use. During inference, ToolkenGPT invokes a tool once the
corresponding special token is predicted. During a tool call, it passes arguments by learning from
in-context demonstrations. ToolkenGPT uses LLaMA-33B (Touvron et al., 2023) as its base model.

We evaluated TOOLDEC’s performance on FuncQAmulti(Hao et al., 2023), which tests LLMs’ ability
in numerical reasoning tasks with 68 math problems. LLMs are required to produce a numerical
answer using a few of the 13 arithmetic operations as tools (e.g. multiply, power, lcm). Following
Hao et al. (2023), we report results of other baselines, including ChatGPT without tools and LLaMA
with ReAct and tools.

3.2 Integrating TOOLDEC with the Base Model

Since ToolkenGPT uses special tokens to call tools, in the first setting we apply TOOLDEC only to
guarantee the syntax of arguments. Our FSM guarantees that every argument is a valid number, and
arguments are separated by commas. It also guarantees that the actual number of arguments passed
to a function is exactly the number needed by it. We compared TOOLDEC to two variants of the
baseline in Hao et al. (2023), one with backtrace and one without. Backtrace tries to avoid failed
tool calls by allowing the LLM to go back and try the next probable token, in place of the failed tool
call. To evaluate TOOLDEC, we report the average inference time per problem and tool error rates in
addition to accuracy.

Q: Rectangle A has a length of 3.64 cm, its 
width is 1.23 cm shorter than the length, the 
area of A is?

A: The length of A is 3.64 cm, the width is 3.64-
1.23=<T>

A: The length of A is 3.64 cm, the width is 3.64-
1.23=(performing the math operation named: 
subtract)

A: The length of A is 3.64 cm, the width is 3.64-
1.23=<subtract>(

Figure 4: Once a tool call begins, TOOLDEC
injects a special prompt (blue text) into con-
text to generate the tool name.

Next, to study how TOOLDEC can enable generaliz-
able tool selection, we mimic ToolkenGPT’s planning
method and prompt LLM to generate a tool name.
We fine-tune the embedding of a single special token
<T> to represent all tools, reducing the size of extra
vocabulary to 1. Once <T> is generated, a tool call be-
gins. We prompt LLM to generate a tool name. The
generation of this tool name is guided by an FSM
constructed from a list of all available tools. This tool
name is then plugged back into the context to start
the generation of arguments. We show an example in
Figure 6.

We tune the baseline and TOOLDEC on a small set (4)
of seen tools and demonstrate that TOOLDEC doesn’t
need additional data and further fine-tuning to adopt
unseen (9) tools.

3.3 Experimental Results

TOOLDEC Eliminates Syntax Errors. Table 2 shows the results on FuncQAmulti. Although
ToolkenGPT eliminates the possibility of calling non-existent tool names by fine-tuning a special
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Table 2: Results on FuncQAmulti. ToolkenGPT with TOOLDEC eliminated all tool errors. Compared to
ToolkenGPT without backtrace, TOOLDEC was better in both accuracy and inference time. Compared
to ToolkenGPT with backtrace, TOOLDEC achieved a comparable accuracy with only half the time.

Accuracy ↑ Time ↓ Tool Error ↓

0-shot ChatGPT w/o tools 9% - -
LLaMA w/ tools + ReAct 6% - -
ToolkenGPT 10.3% 7.76s 27.9%
ToolkenGPT + Backtrace 14.7% 10.39s 0.0%

ToolkenGPT + TOOLDEC (ours) 13.2% 5.95s 0.0%

0 3 6 9
Number of Unseen Tools in Test Set

0.04

0.06

0.08

0.10

0.12

0.14
Ac

cu
ra
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ToolkenGPT

Figure 5: As the number of unseen tools increased, TOOLDEC kept a similar high performance.

token embedding, it can still suffer from other syntactic errors, which is demonstrated by the 27.9%
tool error rate. As a drop-in replacement, TOOLDEC increased ToolkenGPT’s accuracy while being
much faster in inference. We observed that the short inference time was mainly due to TOOLDEC’s
role in preventing the generation of invalid tokens in the argument list, which could put the model in
a confused state. We show examples in Appendix A.3. Although ToolkenGPT + backtrace achieved
slightly better accuracy than TOOLDEC, it used 2x more time to try different tools. Note that since
TOOLDEC eliminated all tool errors, there were no failed tool calls for backtrace to retry.

TOOLDEC enables generalizable tool selection. In Figure 5, we present the results on FuncQA.
While ToolkenGPT and TOOLDEC achieved similar accuracies on tasks that involved only seen tools,
ToolkenGPT failed to generalize to unseen tools, resulting in a significant performance drop. On the
other hand, TOOLDEC reduces the token space to only prefixes of valid functions, allowing LLMs to
exploit the semantics of function names. Consequently, TOOLDEC maintains a comparable accuracy
even on unseen tools and achieve 8x better accuracy on multi-hop problems.

4 Conclusion

This paper presents TOOLDEC, a novel decoding algorithm designed to enhance Large Language
Models (LLMs) by integrating external tools and ensuring their invocation is syntax-error-free.
TOOLDEC, guided by a finite-state machine constructed from tool documentation, accurately rep-
resents the grammar of tool calls, addressing prevalent issues like erroneous tool calls and poor
generalization to unseen tools in existing models. It also exhibits the ability to generalize to unseen
tools without additional fine-tuning data.

The advancements by TOOLDEC open avenues for research in developing more sophisticated models
adaptable to a wider range of tools and applications without additional training data, leading to more
versatile and robust LLMs capable of solving a broader spectrum of complex problems. The success
of TOOLDEC in eliminating syntax errors can inspire research focusing on semantic accuracy and
contextual relevance of tool calls. This can lead to models that invoke, understand, and leverage tools
more effectively, enhancing LLMs’ overall problem-solving capabilities.
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A Appendix

A.1 Related Works

Fine-tuning language models to use tools. Language models can be fine-tuned to use tools with
data that contain interleaving text and tool use. Earlier studies make language models use a single
tool like a retrieval module (Borgeaud et al., 2022; Guu et al., 2020) or a search engine (Nakano et al.,
2021) by fine-tuning. Recent advances in tool-augmented language models that use multiple tools
(Schick et al., 2023; Parisi et al., 2022) also fine-tune language models to use tools including QA
models, translation models, calculators, and search engines. ToolkenGPT (Hao et al., 2023) proposes
to use several special tokens to represent tools and only tunes the embeddings of the tokens so that
new tool adoption can be more efficient. However, fine-tuning approaches for tool use still need new
data and extra fine-tuning to adapt a model to new tools. We list the differences between finite-state
decoding and the previous two paradigms in ??.

In-context learning for tool use. Language models can learn from in-context examples (Brown
et al., 2020) and follow instructions (Ouyang et al., 2022). This makes it possible to simply put the
descriptions of tools in the prompt and ask language models to use them. Recent works have used this
possibility to use neural models (Shen et al., 2023), RESTful APIs (Qin et al., 2023; Song et al., 2023),
program interpreters (Chen et al., 2022; Gao et al., 2023) and many other tools to solve problems.
In-context learning does not need extra model tuning to use new tools. However, the description and
documentation of new tools still need to be in the prompt, which increases computation cost and
limits the context budget for the model to actually reason about the task.

Constrained decoding and finite-state machines. Previous constrained decoding methods mainly
focus on lexical constraints (Anderson et al., 2017). They reduce the large search space of lexically
constrained decoding with finite-state machines (Anderson et al., 2017), grouping together similar
candidates (Hokamp & Liu, 2017), and better search algorithms (Miao et al., 2019; Lu et al., 2021,
2022). However, lexical constraints are not expressive enough to regulate tool calls. While finite-state
machines have to be weighted and probabilistic to deal with the soft constraints in natural language
(Eisner, 2002; Rastogi et al., 2016), the constraints for syntactic tool calls are hard constraints that
are much easier for FSMs. Therefore, we propose TOOLDEC to meet the syntactic constraints of a
valid tool call.

A.2 Pseudo-Code of the Decoding Algorithm

Algorithm 1 Finite-State Machine Guided Decoding for Language Models

Input:
A DFSM defined by (S, V, g, s0, R);
A language model M that produces the distribution of the next token given a prefix string;
An initial string of tokens x1..k, which represents the prompt from the user.

Output: A string of tokens.
s← s0
while s ̸∈ F do

Vs ← {a|a ∈ V ∧ g(s, a) is defined}
P (xk+1|x1..k)←M(x1..k)

P̃ (x = a|x1..k, s)←

{
P (x=a|x1..k)∑

a′∈Vs
P (x=a′|x1..k)

, a ∈ Vs

0, otherwise
x ∼ P̃ (x|x1..k, s)
xk+1 ← x
k ← k + 1
s← g(s, x)

end while
return x1..k
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A.3 Examples of TOOLDEC Eliminating Tool-related Errors

In this section, we show examples of TOOLDEC preventing tool-related errors on ToolkenGPT.
ToolkenGPT responses are displayed in the left column and TOOLDEC is showed on the right.

Question: A right triangle has a base of length 8.9 and a height length 9.8. What is the 
length of the hypotenuse of the triangle?

Answer: ...The length of the hypotenuse is 
<sqrt>(175.25)=13.24

Answer: ...The length of the hypotenuse is 
<sqrt>(175.25).\n\nQ: A right triangle...

Improper Ending Token

“).” is not parsed by ToolkenGPT as the ending of the argument list. ToolDec forces the correct ending token “)=”

Question: A Ferris wheel has a diameter of 40 meters and takes 1 minutes to complete one 
revolution. If you are at the top of the Ferris wheel, how high above the ground are you after 
12 s? (take pi as 3.14)

Answer: The circumference of the Ferris wheel is 
<multiply>(40, 3.14)=125.6…

Answer: The circumference of the Ferris wheel is 
<multiply>(40, pi)=error: name ‘pi’ is not defined

Illegal Symbol

Figure 6: TOOLDEC can eliminate the common tool-related errors for fine-tuned models.
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