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Abstract

Reasoning in mathematical domains remains a significant challenge for relatively
small language models (LMs). Many current methods focus on specializing LMs in
mathematical reasoning and rely heavily on distilling knowledge from powerful yet
inefficient large LMs (LLMs). In this work, we explore a new direction that avoids
over-reliance on LLM teachers, introducing a multi-view fine-tuning method that
efficiently exploits existing mathematical problem datasets with diverse annotation
styles. Our approach uniquely considers the various annotation formats as different
“views” that may help each other and leverages them in training the model. By
postpending distinct instructions to input questions, models can learn to generate
solutions in diverse formats in a flexible manner. Experimental results show that
our strategy enables relatively small LMs to outperform prior approaches that
heavily rely on knowledge distillation, as well as carefully established baselines.
Additionally, the proposed method grants the models promising generalization
ability across various views and datasets, and the capability to learn from inaccurate
or incomplete noisy data. We hope our multi-view training paradigm could inspire
future studies in other machine reasoning domains.

1 Introduction

To obtain mathematical reasoning models that are both efficient and effective, a widely explored
direction is to specialize general-purpose LMs in mathematics [Fu et al., 2023] by supervised fine-
tuning and distilling the knowledge and abilities from larger teacher models into smaller student
models [Ho et al., 2022, Shridhar et al., 2022, Magister et al., 2022, Hsieh et al., 2023, Liang et al.,
2023]. However, this kind of approach faces certain limitations. Firstly, it heavily relies on CoT
explanations of existing data or extra CoT-style data generated by the larger models to train the
smaller student model, and the most common choices for teachers are the GPT series and PaLM-540B
Chowdhery et al. [2022], which are resource-intensive and costly. Moreover, LLMs might still make
errors or fail to sufficiently explain reasoning steps, which could adversely influence the quality of
the generated data and subsequently, the performance of the student models.

Instead of relying solely on inefficient LLMs to generate CoT annotations or additional training
samples, in this paper, we focus on an under-explored question:

Can we effectively utilize publicly accessible datasets to develop small LMs specialized in
mathematical problem solving?

Using existing annotated datasets can reduce manual effort and computational costs compared
with relying on LLMs to generate additional annotated data. However, there are also several
challenges posed by this direction. First, existing datasets vary significantly in their annotation
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formats. Additionally, as we collect more data from various data sources such as websites, the
potential of encountering irrelevant or even inaccurate data cannot be disregarded. These differences
in annotation styles and quality can hinder the effectiveness of these datasets in training math
reasoners. Empirically, we observe that merely merging multiple datasets with different annotation
formats cannot always improve model performance — in fact, it often has a negative effect.

To address the above challenges, we propose a Multi-View Fine-Tuning (MinT) paradigm. In this
context, the disparate annotation methods employed across different datasets are conceptualized as
distinct “views” of mathematical problem solutions. To enhance the model’s reasoning ability by
fully leveraging existing data, we not only utilize the original views but also expand the solution
views in existing math word problem datasets by view transformation. Then we append view-
specific instructions to the input questions to guide the models to generate solutions in the desired
view. Our underlying assumption is that training the model to comprehend various solution views
equates to learning different methods of mathematical reasoning, which inherently helps strengthen
its reasoning and generalization capabilities. Extensive experimental results support the efficacy
of MinT, indicating that it fosters a variety of generalizations that contribute to enhancing overall
performance across all views. Notably, our paradigm can also be used to incorporate noisy datasets,
by regarding them as a new view, to further improve the performance of existing views.

2 Our Approach

2.1 Our Views

Clean Chain-of-Thought Explanations (CoTclean) The first view, clean chain-of-thought ex-
planations (CoTclean), is featured in the GSM8K dataset. This annotation style entails a thorough,
step-by-step explanation of the solution process. Each intermediary step is clearly elaborated until the
final solution is derived. These explanations serve as a detailed guide, illustrate the logical reasoning
behind each step and contribute to the comprehension of the entire solving process.

Equation Solutions (EQN) The second view, equation solutions (EQN), presents each question’s
solution as an equation assembled from a series of operators and quantities, without any explanations.
Although this view lacks the detailed explanation provided by CoT solutions, it offers a high-level
representation of the solution and is one of the most prevalent annotation formats in datasets such as
Ape210K, MathQA, and CM17K. It captures the essence of the problem-solving process in the form
of a mathematical expression, making it an efficient and effective format to solve certain types of
problems.

Solution Tree Pre-order Traversal (TREE) The third view, solution tree pre-order traversal
(TREE), is an abstract representation of the solution. Widely adopted by math word problem solvers
as suggested in previous studies[Zhang et al., 2020, Liang et al., 2022, Jie et al., 2022], it adopts
the pre-order traversal of the solution tree, which avoids the use of parentheses and thus further
simplifies the solution grammar compared with EQN solutions. More importantly, this form reflects
a goal-driven solving strategy aligned with human reasoning[Xie and Sun, 2019]. The expression of
solutions in this abstract form fosters efficient solution processing and inference.

Table 1: Examples of three views of mathematical solutions.
Question: Beth bakes 4, 2 dozen batches of cookies in a week. If these cookies are shared
amongst 16 people equally, how many cookies does each person consume?

View Solution

CoTclean Beth bakes 4, 2 dozen batches of cookies for a total of 4*2 = ≪4*2=8≫8 dozen
cookies. There are 12 cookies in a dozen and she makes 8 dozen cookies for
a total of 12*8 = ≪12*8=96≫96 cookies. She splits the 96 cookies equally
amongst 16 people so they each eat 96/16 = ≪96/16=6≫ 6 cookies.

EQN x = 12*(4*2)/16
TREE / * 12 * 4 2 16
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Figure 1: We use MinT to fine-tune a LLaMA-7B model that specializes in math problem solving.
First, the original annotation is transformed into multiple different views. Then, the model is trained
by instructions to generate different solution forms for one problem.

Noisy Chain-of-Thought Explanations (CoTnoisy) Besides them, the fourth view, noisy chain-of-
thought explanations (CoTnoisy), is similar to CoTclean, albeit with noise introduced. This noise may
come from incomplete explanations, minor calculation errors, irrelevant domains, or misinterpretation
of the problem.

In summary, the CoTcleanview provides a detailed explanation, making it the richest in information. It
outlines each solution step, mimicking the human method of detailed problem-solving. In contrast, the
EQN view is more concise. It captures only the core symbols necessary for the solution, ideal for quick
interpretation and computation. Then, the TREE view further simplifies equation representation using
a hierarchical approach, which is more concise and coherent. Our multi-view learning framework
leverages these different solution forms. By training the model on multiple views, it gains a broader
and deeper understanding. This is similar to how teachers encourage students to consider multiple
solution paths to understand problems better. As a result, our approach can enhance the model’s
problem-solving capabilities.

View Transformation As shown in Table 1, the CoTclean view contains both equations and
explanations. Therefore, we can simply extract all the equations from the CoTclean view using
rule-based detection, and then we combine and transform them into the EQN view. Apart from that,
the third view, TREE, can be derived from the EQN view, through well-defined algorithms such as
Wang et al. [2018].

2.2 Multi-View Fine-Tuning

Our approach leverages a method we refer to as Multi-View Fine-Tuning (MinT ), which guides
the model in generating different views of solutions by postpending specific instruction strings to
the input questions. This results in multiple unique concatenated instructions for each problem, each
guiding the model to produce a corresponding view of the answer, as shown in Figure1.

3 Experiments

Our experiments mainly aims to answer the following research questions:

RQ1: How does MinT affect the performance of a mathematical reasoning model trained on a single
dataset with different views when in comparison to individual fine-tuning on each view?

RQ2: How does MinT affect the performance of a mathematical reasoning model trained across
different datasets with different views?

RQ3: What is the effect of introducing additional noisy training data?

3.1 Results

3.1.1 Generalization Across Different Views on One Dataset (RQ1)

The GSM8k dataset is selected for this investigation, which is annotated by the CoTclean view, which
can be conveniently transformed into EQN and TREE views, thus offering a suitable platform for
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our investigation. As a baseline, we consider the performance of models that have been fine-tuned
on GSM8k using each of the three views individually. Then, we introduce a model that has been
fine-tuned with our proposed approach and evaluate it on different views by postpending different
instructions.

Table 2: Results on different views of GSM8k.

Prior Work Accuracy
Magister et al. [2022] (T5-11B) 38.2%

Yuan et al. [2023] (LLaMA2-7B) 50.3%
Luo et al. [2023] (LLaMA2-7B) 54.9%

Yue et al. [2023] (CodeLLaMA-7B) 58.8%
Train View Test View Accuracy
CoTclean CoTclean 35.4%

EQN EQN 30.5%
TREE TREE 32.3%

CoTclean+EQN CoTclean 35.9%
CoTclean+EQN EQN 36.2%

CoTclean+EQN+TREE CoTclean 36.5%
CoTclean+EQN+TREE EQN 36.9%
CoTclean+EQN+TREE TREE 37.8%

Table 2 shows that augmenting the data with
additional views improves performance on all
views. Fine-tuning on the original achieves
35.4% accuracy on the set. Adding EQN and
Tree views during training boosts to 36.5%, a
1.1% absolute improvement. More substantial
gains are observed on the Tree view (from 32.3%
to 37.8%). We can also notice that the perfor-
mance on TREE view is the best, where the po-
tential reason is that this view has the simplest
grammar, hence it is the easiest view for the
model to learn its pattern. Also, we note that
prior work utilizes additional high-quality data
generated by LLMs. As such, we would like to
clarify that our work is orthogonal to previous
results and thus, we are not intending to make
comparisons, though including them as refer-
ence points may be informative. In fact, our MinT can seamlessly combine with those data-centric
methods, by simply assigning additional views for the generated data from stronger models.

3.1.2 Generalization Across Different Datasets with Different Views (RQ2)

For this investigation, we utilize four different datasets: GSM8k, MathQA, CM17k, and Ape210k.
Our baseline for comparison involves prior best results, the single dataset fine-tuning on LLaMA-7B,
and simply merging all four datasets for fine-tuning on LLaMA-7B, as shown in Table 3. The
results show that straightforward merging cannot bring any improvements. Contrastively, it even
has a negative effect. Alternatively, with our multi-view learning approach to these four datasets,
the model obtains a general improvement across all views when additional training data is added.
Another notable finding is that the performance of the CoTclean view on the GSM8k dataset gets
improved by multi-view fine-tuning with the other three datasets, even the additional datasets actually
do not provide any supplementary data in the CoTclean view. This outcome shows a promising
generalization ability, illustrating the effectiveness of MinT in better leveraging diverse datasets.

Table 3: Experimental results showing the performance of LLaMA-7B with different fine-tuning
methods across four datasets. The simple dataset mixture means the training data is mixed only with
their original views. For our method MinT, we train our model and report the performance on all
available views. The first column shows the training datasets that are used. Prior best results are: a:
Magister et al. [2022], b: Liang et al. [2022], c: Qin et al. [2021], d: Zhao et al. [2020].

GSM8k MathQA CM17k Ape210k
Single Dataset Baselines

Prior Best 38.2a 76.6b 54.1c 70.2d

Single Dataset 35.4 79.9 70.1 74.0
Simple Dataset Mixture

GSM8k+MathQA 36.7 79.7 - -
Ape210k+CM17k - - 76.0 74.9
All Four Datasets 35.3 81.0 68.9 74.1

Multi-View Fine-Tuning (MinT )
CoTclean EQN TREE EQN TREE EQN EQN TREE

GSM8k+MathQA 36.8 35.8 38.1 79.7 80.5 - - -
Ape210k+CM17k - - - - - 77.1 75.9 74.3
All Four Datasets 38.8 39.2 40.8 81.0 81.3 77.6 76.0 74.3

Furthermore, we observed that the accuracy improvement between the single dataset baseline and our
method is more obvious on the GSM8k and CM17k in comparison to the MathQA and Ape210k.
A possible explanation could be that MathQA and Ape210k already contain a substantial number
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of training problems, thereby enabling the learning of problem patterns and solving skills directly
from their training sets. Consequently, the contribution of external datasets may not be significant in
this case. However, for the more challenging GSM8k and CM17k datasets, our multi-view training
could enhance accuracies more effectively. Furthermore, it can be observed that the EQN view
performs optimally on the Ape210k dataset, which is different from GSM8k. This could potentially
be attributed to the fact that the solutions in Ape210k comprise fewer steps, resulting in relatively
simpler equations compared to those in GSM8k and MathQA. Consequently, converting these
equations into tree traversals may not substantially simplify the solutions, thereby not improving the
model performance. The above two behavior patterns are also echoed in Table 4.

3.1.3 Generalization on CoTnoisy View (RQ3)

In order to further understand the effects of incorporating external noisy training data, we introduce
two additional datasets - ASDiv-CoT and ExamQA. The former provides CoT explanations to
problems within the ASDiv dataset, though approximately 30% of these CoTs are incorrect. The
latter, ExamQA, provides CoT to multi-subject exam problems, and while the solutions provided
are accurate, a large number of them are less related to mathematical reasoning. Table 4 presents
our experimental results: when we directly add the two noisy datasets for training, there is a slight
decrease in accuracy. However, with a specific postfix to differentiate them from the other three
views, the overall performance shows an improvement, which demonstrates the potential of using
external noisy data to improve the performance on specific downstream tasks. In addition, the results
in Table 3 and 4 indicate that multilingual data can also complement each other and help improving
the general reasoning ability.

Table 4: Experimental results showing the performance of LLaMA-7B with different fine-tuning
methods. Four datasets indicate the combination of four clean datasets - GSM8k, MathQA, CM17k
and Ape210k, while two noisy datasets are ASDiv-CoT and ExamQA.

GSM8k MathQA CM17k Ape210k
Simple Dataset Mixture

Four Datasets 35.3 81.0 68.9 74.1
Four Datasets + Two Noisy Datasets 31.9 79.7 71.3 73.2

Multi-View Fine-Tuning (MinT )
CoTclean EQN TREE EQN TREE EQN EQN TREE

Four Datasets 38.8 39.2 40.8 81.0 81.3 77.6 76.0 74.3
Four Datasets + ASDiv-CoT 39.0 39.7 42.2 81.4 81.8 78.2 76.4 75.2

Four Datasets + ExamQA 38.6 38.8 41.0 81.0 82.2 78.1 76.6 75.4
Four Datasets + Two Noisy Datasets 39.2 39.7 42.4 82.0 82.3 78.8 77.0 76.1

4 Conclusion

In this paper, we propose MinT , a novel multi-view fine-tuning approach to enhance the mathe-
matical reasoning capabilities of language models. By framing diverse annotation formats across
datasets as distinct “view” of solutions, our method enables models to learn from these unique
problem-solving perspectives.

Broader Impact We believe MinT provides a scalable and flexible approach for specialized LMs
by supervised fine-tuning, with the potential for broader applicability beyond mathematical domains.
Many other reasoning tasks, such as commonsense or symbolic reasoning, can be solved through
diverse paths. Investigating how to leverage MinT for general flexible reasoning is an exciting future
direction.

Furthermore, MinT demonstrates effective control over language model fine-tuning. By guiding the
model with simple instruction strings, we can take advantage of different types and even incomplete
and irrelevant data, while still performing well for downstream tasks. This opens possibilities for
future design of large-scale general instruction tuning and task-specific fine-tuning.
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Appendix

4.1 Our Method

Formally, each question Q is paired with an instruction string pi drawn from the set P , which
includes all possible instructions. When Q is concatenated with pi, it results in a unique string for
each question. This provides the necessary guidance for the model to generate a corresponding
answer ai from the answer set A. As such, for each question, we formulate multiple sequences
si = Q+ pi + ai. Consequently, during the training phase, the model processes a large number of
these sequences si, enhancing its understanding and generalization across multiple views.

To optimize the model, the next-word-prediction loss L is calculated for each sequence:

L(si) = −
len(si)−1∑

j=1

logP (si,j+1|si,1:j ; Θ), (1)

where P denotes the model’s conditional probability distribution over the next token, facilitated
by the Softmax function of the model’s logits, si,j represents the jth token of sequence si, and Θ
embodies the model parameters. However, to enhance the model’s focus on generating accurate
answers, we exclusively backpropagate the loss calculated on the answer part, denoted as Lai

:

Lai(si) = −
len(si)−1∑

j=len(Q+pi)+1

logP (si,j+1|si,1:j ; Θ). (2)

It ensures that the model focuses on learning to produce precise answers, contributing to its mathe-
matical reasoning ability. During the evaluation, we adopt the same instruction concatenation and
assess the model’s performance on each individual view.

4.2 Mathematical Datasets for Training and Testing

GSM8k (CoTclean, EQN, TREE) The GSM8K dataset Cobbe et al. [2021] is a curated set of 8.5K
high-quality elementary-level math word problems in English, authored by human problem writers. It
is split into approximately 7.5K problems for training and 1K for testing purposes. The problems are
annotated with their comprehensive step-by-step solutions, providing the Clean Chain-of-Thought
Explanations (CoTclean) view.

MathQA (EQN, TREE) MathQA [Amini et al., 2019] contains English mathematical problems
from GRE examinations. Nevertheless, some of the problems in this dataset have quality concerns.
Several efforts [Tan et al., 2022, Li et al., 2022, Liang et al., 2022] have been conducted to cleanse and
filter the MathQA dataset. In our experiment, we adopt the version referenced in Liang et al. [2022],
wherein all solutions are re-annotated by an equation composed of the four arithmetic operators and
numbers, reflecting the Equation Solutions (EQN) view and we also transform that to the TREE view.

Ape210k (EQN, TREE) The Ape210k dataset Zhao et al. [2020] is a large-scale, template-rich
collection of math word problems (MWPs) in Chinese, containing 210,488 problems and 56,532
solution templates. The view of the solutions in Ape210k mirrors that in MathQA. Our experiment
incorporates its 200K training problems and 50K testing problems.

CM17k (EQN) The CM17K dataset [Qin et al., 2021] comprises four types of Chinese MWPs
(arithmetic, one-unknown linear, one-unknown non-linear, equation set), which is different from
MathQA and Ape210k. Therefore, we only have the EQN view for the solutions in this dataset.

4.3 Additional Noisy Datasets for Training

ASDiv-CoT (CoTnoisy) The ASDiv dataset [Miao et al., 2020] consists of 2,305 English MWPs
that are diverse in language patterns and problem types. We employ the few-shot CoT predictions
of GPT-3 provided by Wei et al. [2022]1 on this dataset as one of the CoTnoisyviews for training.

1https://github.com/jasonwei20/chain-of-thought-prompting.
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With an accuracy of 71.3%, approximately 30% of the predictions are spurious. The inclusion of this
dataset shows the adaptability and broad applicability of our method to inaccurate LLM-generated
data.

ExamQA (CoTnoisy) The ExamQA dataset [Yu et al., 2021] is a comprehensive Chinese dataset of
real-world exams, containing 638k multiple-choice instances across various subjects (e.g., sociology,
education, and psychology). We manually filter a subset with 20k problems that contain numbers and
equations in their answers by hand-crafted rules. Despite each problem in this subset being annotated
with its ground truth and step-by-step solutions, we inevitably introduce many problems that are less
relevant to the math subject. This dataset also serves as one of the CoTnoisy views, also showing the
generalizability of our approach.

4.4 Evaluation on Held-out Dataset

GSM8K Four Datasets Six Datasets

50

60

70

80

65.1

75.0

78.3

50.1

57.5 58.5

52.4

58.5 59.0

Tree Eval
CoT Eval
EQN Eval

Figure 2: Experimental results on the MAWPS
dataset. X-axis indicates the training datasets and
Y-axis indicates the accuracy.

In order to further assess the multi-view prob-
lem solving abilities of our method, we evalu-
ated it on the held-out dataset, MAWPS Koncel-
Kedziorski et al. [2016], which contains 2,373
English MWPs annotated with Equation Solu-
tions (ES) view. It integrates several earlier
datasets in Hosseini et al. [2014], Kushman et al.
[2014],Koncel-Kedziorski et al. [2015] and Roy
and Roth [2015] and thus serves as a compre-
hensive benchmark. Three training data settings
are used: GSM8k only, four clean datasets, and
all six datasets, where respective models are all
trained with MinT.

Our results in 2 are similar to the observations
from our previous experiments: increasing the
number of datasets used in training boosts per-
formance across all views. It is noteworthy that
although the MAWPS dataset is originally anno-
tated using the EQN view, our model manages
to attain an accuracy of 58.5% when attempting
to solve problems using step-by-step CoTs. This finding indicates that the problem solving ability ac-
quired from the training datasets can indeed be transferred to the held-out datasets. More interestingly,
it suggests that our method could serve tasks like multi-view data annotation.

4.5 Adaptivity on Different Backbones

In this experiment, we replace our original backbone model LLaMA-7B with other two state-of-
the-art model, namely BLOOMz-7B Muennighoff et al. [2022] and Vicuna-7B Chiang et al. [2023].
This substitution allows us to observe how well our method adapts to different language model
architectures. We also employ three models for this task: one trained on the GSM8k dataset, another
trained on a combination of four clean math datasets, and a third trained on a total of six datasets. For
each of these models, multi-view fine-tuning is employed during the training process.

As illustrated in Figure 3, our method demonstrates the same pattern on both backbones compared to
the LLaMA-7B backbone, i.e., incorporating more training data can further enhance performance with
the aid of multi-view training. Also, it is notable that the Vicuna backbone has a better performance
on the CoTclean view, this is because the Vicuna model is more familiar with the “explanation” style
data than symbolic equations by continual fine-tuning on dialogues. This means that the success
of our method is not restricted to one specific model, it also extends to other language models and
benefits from their own characters. This consistent performance across different backbones validates
the robustness of our approach and supports its potential applicability in a wider range.
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Figure 3: Experimental results with different backbones on GSM8K. X-axis indicates the evaluation
views and Y-axis indicates the accuracy.

4.6 Ablation Study

To demonstrate the effectiveness of our proposed approach. We implement three ablated studies: 1)
Only use the original view for every dataset, and postpending the corresponding instructions to the
training samples; 2) Only use the EQN view from GSM8k, MathQA, CM17k and Ape210k and keep
the instructions; 3) Only use the TREE view from GSM8k, MathQA and Ape210k and also keep the
instructions.

Table 5: We use GSM8k, MathQA, CM17k and Ape210k in our ablation study with different training
strategies described in 4.6 in Italics. The first ablation (a1) aims to investigate the impact of the
instructions, while the rest two ablations (a2, a3) can examine the improvement brought by the
generalization from other views.

GSM8k MathQA CM17k Ape210k
Simple Dataset Mixture 35.3 81.0 68.9 74.1

a1. Original View with Instructions 35.5 80.2 76.6 74.7
a2. Only EQN View with Instructions 34.6 79.9 77.5 74.0
a3. Only TREE View with Instructions 39.6 81.0 - 75.2

MinT (Our method) 40.8 81.3 77.6 76.0

As shown in Table 5, the first ablation proves that the instructions can bring some improvements
on certain datasets. And the other two ablations show that unifying the views of solution can also
bring some improvements to the performance. Nonetheless, when compared with these baselines and
ablations, our proposed MinT performs the best, thereby reaffirming that MinT truly capitalizes on
the generalization across diverse solution views of mathematical problems.

4.7 Case Study

Figure 4 illustrates a sample problem from the MAWPS dataset, which is fed into three distinct
models discussed in Section 4.4. The first model yields an completely wrong solution, possibly due to
the significant disparities in solution patterns between GSM8k and MAWPS, leading to the model’s
inability to generalize for problems in the held-out set. The second model’s solution, though only
partially correct and incomplete, suggests an improvement in its reasoning capabilities. The third
model, trained with all six datasets, effectively solves the problem in this example, thereby affirming
the efficacy of our methodology in improving mathematical reasoning ability.

4.8 Instructions

In this paper, we propose to use different instructions to guide the generation of distinct solution
views. The specific instructions that we used are listed in Figure 5. It is notable that We separate
the English and Chinese instructions, which we find helpful to the final performance. The possible
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Figure 4: Our case study on the held-out dataset - MAWPS.

reason is that mixed languages are relatively rare in the pre-training corpus and thus the LMs are not
familiar with this pattern.

Figure 5: This table shows the instructions we used for different views and languages.

4.9 Discussion

4.9.1 Limitations and Future Work

Nonetheless, our work is not without limitations. While we demonstrate generalization on held-out
datasets, evaluation on more diverse views and tasks would further validate the capabilities of our
proposed method. Also, there may be optimal combinations and proportions of data across views that
our current work does not explore in depth. Another unexplored aspect is whether multiple views can
augment each other through shared learning, potentially enhancing the overall accuracy. Techniques
such as ensemble learning or majority voting could provide avenues for further improvement in this
regard. Last but not least, there are more views that could be integrated into MinT training, such as
programs Amini et al. [2019], Zhang and Moshfeghi [2022], and Python codes Mishra et al. [2022],
Chen et al. [2022]. We leave these possibilities in our future work.
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