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Abstract

Geometry diagram parsing plays a key role in geometry problem solving, wherein
the primitive extraction and relation parsing remain challenging due to the complex
layout and between-primitive relationship. In this paper, we propose a powerful di-
agram parser based on deep learning and graph reasoning. Specifically, a modified
instance segmentation method is proposed to extract geometric primitives, and the
graph neural network (GNN) is leveraged to realize relation parsing and primitive
classification incorporating geometric features and prior knowledge. All the mod-
ules are integrated into an end-to-end model called PGDPNet to perform all the
sub-tasks simultaneously. In addition, we build a new large-scale geometry diagram
dataset named PGDP5K with primitive level annotations. Experiments on PGDP5K
and an existing dataset IMP-Geometry3K show that our model outperforms state-
of-the-art methods in four sub-tasks remarkably. Our code, dataset and appendix
material are available at https://github.com/mingliangzhang2018/PGDP.

1 Introduction
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Figure 1: Examples of plane geometry diagram.

Automatic geometry problem solving is a
long-standing problem and has important ap-
plications in the intelligent education field
[1, 2, 3]. The problem involves text parsing,
corresponding diagram parsing and logical
reasoning. Previous research works [4, 5]
mainly concentrated on text parsing and log-
ical reasoning, but little attention has been
paid to diagram parsing [6, 7]. Geometry dia-
grams carry rich information about the geom-
etry problem, which can provide crucial cues
to aid problem solving. In this work, we focus
on plane geometry diagram parsing (PGDP)
and propose a powerful diagram parser.

Generally, the PGDP task involves identifying
and locating visual primitives in the diagram and discovering relationships among them. As shown in
Figure 1, a geometry diagram consists of various types and layouts of geometry, symbols and texts,
and these visual primitives are semantically related to each other in various ways. Due to the diversity
of style and the interference of primitives, traditional methods, such as Hough transform and Freeman
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Figure 2: Comparison between tasks of SGG (first image) and PGDP (next three images). Relation
tuples are shown below each image. ‘P#’,‘L#’,‘C#’,‘T#’ and ‘S#’ denote instances of point, line,
circle, text and symbol, respectively.

chain-code [8], perform poorly in geometric primitive extraction. Meanwhile, the spatial, structural
and semantic relations among primitives cannot be parsed correctly by simple rule-based methods
[6, 7]. Therefore, great efforts are needed for geometric primitive extraction and between-primitive
relationship parsing.

We cast geometric primitive extraction as an instance segmentation problem. Geometric primitives
such as lines and arcs are often slender and overlapped. Thus, bounding box based instance seg-
mentation methods [9, 10, 11] are not suitable for this task. Our proposed PGDP framework instead
employs a geometric segmentation module (GSM), consisting of a semantic segmentation branch and
a segmentation embedding branch, to cluster multi-class primitive instances at pixel level, so as to
overcome the issues stated above.

For primitive relation parsing, we model PGDP as a special scene graph generation (SGG) problem
[12, 13]. In contrast to ordinary SGG, as shown in Figure 2, PGDP deals with graphs with hetero-
geneous nodes and multi-edges associated, when primitives and their relations are seen as nodes
and edges, respectively. To optimize reasoning incorporating geometry prior knowledge, we adopt a
GNN module (GM) aggregated with visual, spatial and structural information to predict the primitive
relation and identify the text class simultaneously.

Integrating with GSM and GM, we present the deep learning model for PGDP called PGDPNet.
The PGDPNet is trained end-to-end so as to optimize the overall primitive extraction and relation
reasoning performance. Also, to facilitate the research of PGDP, we build a new large-scale geometry
diagram dataset named PGDP5K, labeled with annotations of primitive locations, classes and their
relations. Experiments on PGDP5K and an existing dataset IMP-Geometry3K demonstrate that
our method can boost the performance of primitive detection, relation parsing and geometry formal
language generation prominently, compared to state-of-the-art methods, and consequently improves
the accuracy of geometry problem solving.

The contributions of this work are summarized in three folds: (1) We propose the PGDPNet, the first
end-to-end deep learning model for explicit geometry diagram parsing. (2) We build a large-scale
dataset PGDP5K, containing fine-grained annotations of primitives and relations. (3) Our method
demonstrates superior performance of geometry diagram parsing, outperforming previous methods
significantly.

2 Task Formulation

The PGDP consists of three fundamental sub-tasks: (1) detection and identification of primitives,
including geometric primitives and non-geometric primitives; (2) building basic relationships among
primitives; (3) generating the geometry formal language. In this work, we model PGDP as a special
SGG, but it is different from the general SGG in two respects, as shown in Figure 2. First, the SGG
obtains coarse box positions of targets from nature scene images through object detection, while PGDP
is aimed to get the fine-grained masks of geometric primitives through instance segmentation, because
they largely overlap with each other in box. Second, the SGG constructs the relationship graph in the
form of subject-predicate-object triplets, which has no necessary dependency between the predicate
and subject/object classes, while the between-object relationship in PGDP is mostly geometric, and
specific relations (predicate) could be inferred according to primitive classes (subject/object) and
prior knowledge, do not require an extra classification step.
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Figure 3: Overview of our proposed PGDPNet.

3 PGDP5K Dataset

Although several datasets [2, 4, 7, 14] for solving geometry problems have been proposed, there is no
dataset focusing on PGDP. To facilitate research in geometry problem solving, we build a new large-
scale and fine-annotated plane geometry diagram dataset named PGDP5K1. The PGDP5K consists of
5000 diagram samples composed of 16 shapes, covering 5 positional relations, 22 symbol types and
6 text types, labeled with more fine-grained annotations at primitive level, including primitive classes,
locations and relationships, where 1,813 non-duplicated images are selected from the Geometry3K
dataset [7] and other 3,187 images are collected from three popular textbooks across grades 6-12
on mathematics curriculum websites2 by taking screenshots from PDF books. Combined with
above annotations and geometric prior knowledge, it can generate intelligible geometric propositions
automatically and uniquely.

4 Model

The proposed PGDPNet depicted in Figure 3 is presented hereon in short, focusing on the geometric
primitive segmentation and the primitive relation parsing. The PGDPNet consists of five modules:
backbone module (BM), non-geometric Detection module (NDM), geometric Segmentation module
(GSM), visual-location Embedding module (VLEM) and GNN module (GM). The BM is a FPN
architecture [15] mixed with location map, enlarging the visual receptive field and being sensitive to
the spatial location. The NDM detects non-geometric primitives with FCOS heads [16] to adapt to
non-geometric objects at different scales. The GSM conducts instance segmentation of geometric
primitives at pixel level, which alleviates the problem of center overlapping of geometric primitives.
The GM parses relationships among primitives by edges predication and text classification, where
primitives and primitive relations are respectively treated as nodes and edges, composing a primitive
relation graph. The model realizes multi-task learning end-to-end with a weighted loss via a carefully
designed integration of different modules. Finally, combining with geometric prior knowledge and
language grammar, it generates the geometry formal language.

5 Experiments

5.1 Primitive Detection

To evaluate the effects of NDM and GSM, we give the performance of primitive extraction on
PGDP5K. Table 2 depicts the geometric primitive detection results using the evaluation manner 1,
in which line instance covers all collinear line segments. We can see that our approach achieves a
remarkable improvement over traditional methods such as Freeman [8] and GEOS [2], particularly

1http://www.nlpr.ia.ac.cn/databases/CASIA-PGDP5K
2https://www.mheducation.com/
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on point and line. We find that most primitives could be well located and recognized except some
minority classes, and joint classification in the GNN evidently improves the performance of text
recognition compared with classification in the NDM.

5.2 Primitive Relation Parsing

To better demonstrate advantages of graph feature generation, we conducted ablation studies in
primitive relation parsing. Table 3 displays performances of different feature initialization methods,
where baseline denotes the method of with only visual-location embedding, SE and PL refer to class
semantic feature and parsing position feature formulated in Eq (5), respectively. The performance
gap is mainly reflected in the relationships of text2geo, sym2geo and text2head. However, most
relations among primitives belong to geo2geo, so the overall performance of relationships shows
little difference. We also compare the methods using another evaluation indicator complete accuracy,
which refers to the proportion of complete correct sample. On the whole, fusion with parsing position
and class semantic information makes model easier to learn representative features so as to promote
relation reasoning, and gains 1.7% complete accuracy improvement.

5.3 Geometry Formal Language Generation

We also conducted experiments in the generation of geometry formal language for a more advanced
evaluation. The outcomes of geometry formal language depend on the complete results of primitive
extraction and relation reasoning to form comprehensible geometric propositions, and any error in
preceding sub-tasks will influence the final generation results. Table 4 shows experimental results
of all, geo2geo and non-geo2geo relationship. Our method without GNN sharply outperforms
the InterGPS [7] on geo2geo relationship, and the GNN module further improves non-geo2geo
relationship reasoning in spite of a slight performance decline on geo2geo, because segmentation
results are already accurate enough to determine the geo2geo relation by the distance rules. Finally,
on two datasets, our PGDPNet respectively achieves 57.2% and 57.4% improvements of Totally
Same of All compared with the InterGPS, and exceeds the one without GNN by 11.0% and 6.5%.

5.4 InterGPS System Problem Solving

To show the potential of our approach in geometry problem solving, we evaluate the performance
using an existing problem solver, the one of InterGPS system [7], by replacing its geometry diagram
parser with ours while remaining other modules unchanged. Table 5 reports the Inter-GPS perfor-
mance feeding with different sources of propositions. When using the text parser of InterGPS with
propositions generated from our PGDPNet, Inter-GPS achieves accuracy of 74.1%, nearly 16.6%
higher than the diagram parser of InterGPS. The GM improves performance by 4.8% compared to the
one without GNN. Slight gaps among generated diagram propositions, generated text propositions
and annotations show that the symbolic geometry solver of InterGPS still has much room to improve.

5.5 Limitations

We show some failure cases of our method in Figure 6. In Figure 6(a), the text “8" is mistaken as the
radius of circle, while the problem text shows that it is an angle label. In Figure 6(b), The text “124◦"
is incorrectly denoted as the degree of ∠PQS but is actually the degree of ∠PQR. This reveals
that geometry diagram parsing should not rely on images alone but also make full use of textual
semantics, and it even involves geometry logical reasoning. Future works will consider incorporating
the text description to aid diagram parsing to further improve parsing performance.

6 Conclusion

We propose the first end-to-end deep learning model PGDPNet for PGDP, which gives explicit
primitive instance extraction, classification and between-primitive relationship reasoning. We also
construct a new large-scale geometry diagram dataset PGDP5K with primitive level annotations.
Experimental results demonstrate the superiority of proposed parsing method. This work promotes
the benchmark of plane geometry diagram parsing, and provides a powerful tool to aid geometry
problem solving and Q&A.
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A Dataset Details

A.1 Statistics

The PGDP5K dataset contains 5,000 diagram samples, consisting of 1,813 non-duplicated images
from the Geometry3K dataset and other 3,187 images collected from three popular textbooks across
grades 6-12 on mathematics curriculum websites. We randomly split the dataset into three subsets:
train set (3,500), validation set (500) and test set (1,000). In contrast to previous datasets, diagrams
in PGDP5K have more complex layouts such as multiple classes of primitives and complicated
primitive relations, which make our dataset more challenging. Specifically, we divide the geometric
primitive, text and symbol into 3, 6 and 16 classes respectively. Some classes of primitives have great
within-class style variations. We also count class distributions of geometry shape, symbol, text and
relation as displayed in Figure 5. They all obey the long-tailed distribution evidently.

A.2 Annotations

Point

Line

Circle

Text

Symbol

Geometric 
primitive

Non-geometric
primitive

Figure 4: Primitive relationship graph of plane
geometry diagram.

The annotations of PGDP5K dataset include
three types: geometric primitive, non-geometric
primitive and primitive relation. These annota-
tions can generate geometry formal language
automatically and uniquely. As to geometric
primitives, we annotate their pixel positions and
uniform pixel widths. For non-geometric prim-
itives, bounding box, symbol class, text class
and text content are labeled. As to primitive re-
lations, we construct a relation graph of elemen-
tary relationships among primitives exhibited
in Figure 4, where we only construct relations
between point and line, point and circle for re-
lations of geometric primitives, because other
high-level relations among geometric primitives
can be derived from these two basic relations. A
two-tuple with multiple entities is used to repre-
sent one relationship as demonstrated in Figure 2. Compared with the triplet of SGG, we take point,

6



Figure 5: Distributions of PGDP5K Dataset. (a)(b)(c)(d) respectively denote the class distribution of
shape, symbol, text and relation.

symbol and text as subjects, and serve other related primitives as objects, neglecting the relation class
term. For more annotation details, please refer to the website of PGDP5K dataset. In addition, we
re-annotate diagrams of the Geometry3K in our way and rename it IMP-Geometry3K.

B Model Details

B.1 Backbone Module (BM)

A typical FPN architecture [15] is used as the BM for visual feature extraction. The FPN layers P3-P7
are exploited for text and symbol detection, and the FPN layer P2 embedded with the location maps
is shared by the geometric segmentation module (GSM) and the visual-location embedding module
(VLEM). Visual features mixed with spatial information will facilitate model learning of follow-up
tasks.

B.2 Non-geometric Detection Module (NDM)

The non-geometric primitives, symbol and text, are detected in NDM. Given the diverse size scales
of text and symbol in geometry diagrams, an anchor-free detection method FCOS [16] is utilized to
avoid the setting of prior anchors and improve the detection speed. This module consists of regression,
center-ness and classification branches. The loss in training is LFCOS = Lreg + Lcns + Lcls, where
Lreg , Lcns and Lcls are the losses of three branches.

B.3 Geometric Segmentation Module (GSM)

Due to complex layouts and elongated shapes, traditional methods and current instance segmentation
approaches based on bounding boxes are all not suitable for geometric primitive extraction. We
propose a new instance segmentation method, where two branches, semantic segmentation branch
and segmentation embedding branch, together implement the multi-class instance segmentation of
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geometric primitives. The semantic segmentation branch performs binary segmentation with the
weighted binary cross-entropy (BCE) loss:

Lbs∗ =
−w∗

Mmap

Mmap∑
i=1

y∗i log (p
∗
i )+(1−y∗i ) log (1−p∗i ) , (1)

where * denotes the primitive class, w is the weight ratio for balancing positive and negative class
pixels, empirically as wp=5, wl=1, wc=4, and Mmap is the pixel number of segmentation map.
Then the segmentation loss of all classes is Lbs=Lbsp+Lbsl+Lbsc. The discriminative loss [17, 18]
is used in the segmentation embedding branch to better differentiate instances:

Ldist=
1

Nlc (Nlc−1)

Nlc∑
n1=1

Nlc∑
n2=1
n2 ̸=n1

[2δd−∥µn1
−µn2

∥]2+ ,

Lvar=
1

Nlc

Nlc∑
n=1

1

Mn

Mn∑
i=1

[∥µn−xi∥−δv]
2
+ ,

(2)

where Nlc = Nl + Nc is the sum of instance number of line and circle, M is the pixel instance
number, x is the pixel embedding, µ is the center of instance embedding. In default, the threshold δd
of center distance is set as 1.5 and threshold δv of embedding radius is set as 0.5. The line instances
and circle instances are learned simultaneously to obtain more distinctive features. In contrast, due
to inherent instance separation in space, point instances are acquired just by connected component
analysis according to the results of semantic segmentation, reducing difficulty of model learning.
Eventually, the whole loss of GSM is Lins=Lbs+Ldist+Lvar.

B.4 GNN Module (GM)

After obtaining the primitives, the relationship among primitives is reasoned by the GM. Before that,
the VLEM unifies all primitive features and works as the initialization of GM. We treat primitives
as nodes and primitive relations as edges to compose a primitive relation graph, represented as
G={V ={V geo, V Non−geo}, E={eij |K}}, where V geo, V Non−geo and E denote the node sets of
geometric and non-geometric primitive, and the edge set. The cardinality of geometric node set is
|V geo|=Np+Nl+Nc, where Np is the instance number of point. The original relation graph is a
difficult hyper-graph with heterogeneous nodes (mask and box) and multi-edge relationship. For
efficient solution, we transform the graph to a simple isomorphic graph and then construct the sparse
graph like the one in Figure 4. Specifically, we only connect nodes that may have relations according
to geometric prior knowledge K, and then categorize edges to determine final results.

The initial features of nodes are represented by the fusion of visual-location embedding VL, parsing
position feature PL and class semantic feature SE. For visual-location embedding, we transform
mask features of variable shapes into vector features of fixed length by the mask average:

VLgeo
i = BT maski

∥maski∥1
, (3)

where B is the visual-location embedding map. The mask average can also reduce the influence
of error caused by inaccurate segmentation. In addition, we employ the RoIAlign method [9] to
normalize multi-scale box features as vector features of the same length:

VLnon−geo
i = RoIAlign(B, boxi). (4)

Besides, parsing position in plane space is a significant feature of geometric primitives. We incorporate
it into the GM to further facilitate relation building, formulated as:

PLi = f∗(pr∗i ), pr
∗=


[x, y], ∗ = point,
[x1, y1, x2, y2], ∗ = line,
[x, y, r], ∗ = circle,
[x1, y1, x2, y2], ∗ = box,

(5)

where pr∗ is the parsing representation of primitives, while point, line, circle and box denotes as a
point, two endpoints, center with radius, and top-left point with bottom-right point, respectively, f∗

is a network module of two fully-connected layers with ReLU activation. In that way, the final node
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feature is formulated as FN&
i =VL&

i +PL&
i +SE&

i , i=1· · ·|V &|, where & is the primitive class geo
or non−geo.

The edge features are only generated for arrow indication relations, and the rest are aggregated
through layer propagation of GNN. Because of elongated shape, the detection performance of arrows
is less satisfactory. Instead of detecting boundary boxes of arrows, we use the union box of head box
and corresponding text box to represent the relation:

FEij=

{
RoIAlign(B,boxi∪boxj), (vi,vj)=(head,text),

0, others.
(6)

Although union box cannot enclose the whole arrow in some cases, it works well in experiments
because the feature box has a larger receptive field than its own size with the FPN.

The GM performs two sub-tasks. The first is predicting the edge class to judge whether existing
relationship between nodes, with the loss function as:

Ledge =
−1

|E|

|E|∑
i=1

yilog (pi)+(1−yi) log (1−pi) . (7)

The second is the fine-grained text classification with CE loss:

Lnode =
−1

Nt

Nt∑
i=1

Ctext∑
c=1

yiclog(pic), (8)

where Nt is the instance number of text and Ctext is the text class number. Compared with visual
features alone, the combined features including spatial structure information promote fine-grained
classification, considering that some texts of different classes are visually identical. As to the
architecture of GNN, the edge graph attention network (EGAT) [19, 20] is employed as the backbone
of GM for its excellent reasoning ability among nodes and edges, and the whole loss of GM is
LGNN =Ledge+Lnode.

B.5 Training and Testing

During the training, the model PGDPNet is trained end-to-end with the aggregated loss:

Lall = LFCOS + α · Lins + β · LGNN . (9)

Empirically we set the weight coefficients α= β = 4. During testing, according to binary masks
obtained from the semantic segmentation branch of GSM, the segmentation embedding branch
clusters embedding features to get instances of line and circle by the MeanShift cluster method.
The parsing position of instance masks could be located accurately by simple fitting methods due
to precise segmentation. The extracted geometric and non-geometric primitives go through the
VLEM to generate initial features of GM, then the GM gets relations among primitives via node and
edge classification. In the end, geometric propositions are produced according to geometry prior
knowledge and language grammar.

C Experimental Details

C.1 Setup

We implemented our method using the PyTorch and FCOS framework [16]. The backbone adopts
MobileNetV2 [21]. The NDM, GSM and VLEM all use 3 groups of 128-channel convolution layers
with corresponding BatchNorm layers. The segmentation embedding dimensionality is 8 and the
visual-location embedding dimensionality is 64. The layer number of GM is 5 and the feature
dimensionalities of nodes and edges are all set to 64. To improve the diversity of samples, two
enhancement strategies, random scale scaling and random flipping, are exploited during the training.
We choose the Adam optimizer with an initial learning rate 5e−4, weight decay 1e−4, step decline
schedule decaying with a rate of 0.2 at 20K, 30K and 35K iterations. We train our model in 40K
iterations with batch size of 12 on 4 TITAN-Xp GPUs.
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InterGPS PGDPNet w/o GNN PGDPNet

Non-geo Primitive Detection Object Detection Object Detection Object Detection
Geo Primitive Detection Hough Transform Instance Segmentation Instance Segmentation
Text Classification Content Rules Detection Classification Joint Classification
Relation parsing Distance Rules Distance Rules GNN
Has Parsing Position Yes No (localizable) No (localizable)
Is End-to-End No No Yes

Table 1: Functions of comparison methods.

Freeman GEOS PGDPNet

Point
Precision 67.46 76.51 99.65
Recall 80.41 93.44 99.71
F1 73.37 84.13 99.68

Line
Precision 50.78 66.99 99.30
Recall 80.43 90.46 99.51
F1 62.25 76.98 99.40

Circle
Precision 90.72 98.25 99.85
Recall 97.75 99.24 99.96
F1 94.10 98.74 99.90

Table 2: Detection performance of geometric primitives with the evaluation manner 1.

C.2 Comparison Methods

To evaluate the effects of different modules, we compare three methods: InterGPS [7], PGDPNet
without GNN, and PGDPNet. As described in Table 1, these approaches respectively adopt different
technologies on sub-tasks, where our PGDPNet is a concise and efficient framework that could be
learned end-to-end from datasets.

C.3 Evaluation Protocols

We evaluate the methods at four levels: primitive detection, relation parsing, geometry formal
language generation, and problem solving. Considering that some labels of bounding box are
loose especially for single-word texts and arrowheads, we set threshold IOU=0.5 to evaluate the
non-geometric primitive detection. As to geometric primitive extraction, there are two evaluation
manners: one (manner 1) is parsing position evaluation that applies to the Hough transform route
and the other (manner 2) is mask evaluation designed for the instance segmentation route. We set
the distance threshold as 15 consistent with the InterGPS [7] for the first manner and set IOU as
0.75 by default for the second manner. As to relation parsing, we divide one multivariate relation
into multiple binary relations, and evaluate the precision, recall and F1 of binary relation terms. The
geometry formal language is characterized by diversity and equivalence, for example, "Angle(P,R,Q)"
is equivalent to "Angle(P,R,N)" in Figure 1(e). For rationality and fairness of evaluation, we improve
the existing evaluation method [7] focusing on propositions with line and angle. Experimental results
are evaluated on four indicators: Likely Same (F1≥50%), Almost Same (F1≥75%), Perfect Recall
(recall=100%) and Totally Same (F1=100%).

D Related Work

Automatic analysis of geometry diagrams has been studied in two main aspects: primitive extraction
and relation reasoning. As to primitive extraction, traditional methods such as Hough transform and
its improved methods [8] are still adopted in most recent geometry diagram parsing works [6, 2, 22, 7]
for their simplicity and efficiency. However, in the scenes of complex layout and multi-primitive
interference, traditional methods inevitably suffer severe performance degradation. Deep learning
based geometric primitive extraction methods [23, 24] have been proposed recently. Nevertheless,
they only focus on one type of geometric primitive such as straight line in nature scenes. Research
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Baseline w SE w PL w SE&PL

All
Precision 98.96 99.16 99.10 99.16
Recall 96.97 97.01 97.11 97.07
F1 97.96 98.07 98.08 98.11

Geo2Geo
Precision 98.84 99.15 99.09 99.13
Recall 98.53 98.56 98.69 98.60
F1 98.68 98.85 98.89 98.86

Text2Geo
Precision 99.09 99.27 99.38 99.27
Recall 96.16 96.61 96.36 96.84
F1 97.60 97.94 97.84 98.04

Sym2Geo
Precision 99.06 98.71 99.01 99.07
Recall 94.13 94.89 95.02 95.27
F1 96.53 96.76 96.97 97.13

Text2Head
Precision 97.70 98.03 98.03 98.08
Recall 91.95 92.26 92.57 95.05
F1 94.74 95.06 95.22 96.54

Complete Acc 81.50 82.50 82.60 83.20

Table 3: Ablation studies of primitive relation parsing. "A2B" denotes the relationship between class
A and class B by default.

IMP-Geometry3K PGDP5K

All

Likely Same 73.71 / 99.17 / 99.33 65.70 / 98.40 / 99.00
Almost Same 50.08 / 95.51 / 98.50 44.40 / 93.10 / 96.60
Perfect Recall 45.26 / 81.03 / 92.18 40.00 / 79.70 / 86.20
Totally Same 34.28 / 80.53 / 91.51 27.30 / 78.20 / 84.70

Geo2Geo

Likely Same 69.88 / 99.67 / 99.50 63.90 / 99.10 / 99.00
Almost Same 56.24 / 99.50 / 99.00 49.40 / 97.30 / 97.10
Perfect Recall 74.71 / 99.33 / 99.17 78.70 / 96.90 / 97.40
Totally Same 47.59 / 98.84 / 98.33 40.80 / 93.60 / 94.50

Non-geo
2Geo

Likely Same 77.04 / 96.01 / 99.00 67.30 / 95.80 / 98.00
Almost Same 59.07 / 89.35 / 96.01 49.80 / 88.20 / 94.90
Perfect Recall 50.92 / 81.20 / 92.85 45.70 / 81.30 / 87.00
Totally Same 48.59 / 80.87 / 92.85 40.50 / 80.60 / 86.40

Table 4: Evaluation results of specification generation in geometry formal language. "&/&/&" denotes
performances of three methods compared: InterGPS, PGDPNet without GNN and PGDPNet.

Text InterGPS Text GT

Diagram w/o 25.4±0.0 25.4±0.0
Diagram InterGPS 57.5±0.2 58.0±1.7
Diagram PGDPNet w/o GNN 69.3±0.2 70.0±0.4
Diagram PGDPNet 74.1±0.2 74.3±0.3
Diagram GT 75.9±0.2 76.0±0.4

Table 5: Problem solving accuracy of InterGPS system on IMP-Geometry3K dataset.
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Problem Text:

Find angle 8.

Choices:

A. 20  B. 70  C. 90  D. 180

Answer: C

Problem Text:

QS is angle bisector of ∠PQR，
what are the measures of
∠PQS and ∠SQR?

Answer: 62°

(a)

(b)

Error: 
Equals(LengthOf(Line(A, B)), 8)

True: 
Equals(MeasureOf(Angle(A, B, C)), 

MeasureOf(angle 8))

Error: 
Equals(MeasureOf(Angle(P, Q, S)), 124)

True: 
Equals(MeasureOf(Angle(P, Q, R)), 124)

Figure 6: Failure examples of our method.

works about geometric relation reasoning of diagrams are undergoing. Some methods [6, 7] use
greedy or optimization strategies based on distance and content rules, but cannot parse complicated
between-primitive relations correctly. Our work, inspired by the SGG task [12, 13, 19], reasons
primitive relations with the GNN model [25, 20]. To sum up, our work proposes a more powerful
geometry diagram parser with a novel and effective scheme for diagram primitive extraction and
reasoning.
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