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Abstract

Large Language Models (LLMs) have demonstrated remarkable performance on
various quantitative reasoning and knowledge benchmarks. However, many of
these benchmarks are losing utility as LLMs get increasingly high scores, despite
not yet reaching expert performance in these domains. We introduce ARB, a
novel benchmark composed of advanced reasoning problems in multiple fields.
ARB presents a more challenging test than prior benchmarks, featuring problems
in mathematics, physics, biology, chemistry, and law. As a subset of ARB, we
introduce a challenging set of math and physics problems which require advanced
symbolic reasoning and domain knowledge. We evaluate recent models such as
GPT-4 and Claude on ARB and demonstrate that current models score well below
50% on more demanding tasks. In order to improve both automatic and assisted
evaluation capabilities, we introduce a rubric-based evaluation approach, allowing
GPT-4 to score its own intermediate reasoning steps. We find promising agreement
between annotators and GPT-4 rubric evaluation scores.

1 Introduction

Models such as ChatGPT have shown the ability to pass entry-level examinations in fields such as
law [Bommarito II and Katz, 2022], medicine [Kung et al., 2023], economics [Caplan, 2023], and
mathematics [Shakarian et al., 2023]. Nevertheless, LLM understanding of many fields is reportedly
shallow and unreliable [Shapira et al., 2023]. Expert reasoning in domains with specialized knowledge
is essential for automated systems to augment skilled professionals [Noy and Zhang, 2023].

In this paper, we introduce a new benchmark dataset, ARB (Advanced Reasoning Benchmark),
designed to evaluate expert reasoning abilities in mathematics, physics, chemistry, biology, and
law.* To make the benchmark more challenging than previous benchmarks, we extract graduate-level
tasks from resources intended for domain professionals. The mathematics and physics portions are
substantially more difficult than popular benchmarks such as MATH Hendrycks et al. [2021].

Our dataset offers improvements over existing benchmarks:

• Hundreds of problems requiring expert reasoning in quantitative subjects, where LLMs are
known to underperform;

• For mathematics and physics, all problems are short-answer and open-response questions,
in contrast to the multiple-choice questions that dominated earlier benchmarks.

†Email: tsawada@gatech.edu.
‡‡Email: contact@duckai.org.

*Instructions for accessing the dataset can be found in the appendix.
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In addition, we propose an automated rubric-based method allowing self-evaluation of intermediate
reasoning steps. While not currently a substitute for human evaluation, rubrics generated by GPT-4
have good coverage, and self-evaluation scores track human grading surprisingly well.

2 Related Work

Improving the reasoning capabilities of LLMs had been a subject of recent interest, with a particular
focus on chain-of-thought (CoT) techniques [Wei et al., 2022, Kojima et al., 2023, Wang et al.,
2023, Yao et al., 2023, Nye et al., 2021]. Such techniques have been successful in solving reasoning
problems involving commonsense reasoning and basic mathematics, by inferring many tokens before
yielding final answers. Models such as Minerva [Lewkowycz et al., 2022] demonstrate improvement
of capabilities by fine-tuning on extensive datasets of mathematical writing. These works typically
evaluate techniques against math benchmarks (e.g., GSM8K [Cobbe et al., 2021], MATH [Hendrycks
et al., 2021], SVAMP [Patel et al., 2021], ASDiv [Miao et al., 2020], MMLU [Hendrycks et al., 2020],
AQuA [Ling et al., 2017], MAWPS [Koncel-Kedziorski et al., 2016], MultiArith [Roy and Roth,
2016]) and commonsense reasoning tasks (e.g., CSQA [Talmor et al., 2018], StrategyQA [Geva et al.,
2021], HotpotQA [Yang et al., 2018] ).

However, state of the art LLMs including GPT-4 [OpenAI, 2023] and Claude achieve big scores on
most of these benchmarks. This underscores the need for rapid improvement in evaluation capability
to accompany rapid improvement in LLM capability. Recently, several new benchmarks have been
introduced for reasoning and planning tasks, such as the GPT-Planning Benchmark [Valmeekam et al.,
2023], and ALERT Reasoning Benchmark [Yu et al., 2022]. Apart from using LLMs to generate
evaluation tasks [Zhang et al., 2022, Perez et al., 2022], LLMs have increasingly been used as a proxy
for human evaluation [Chiang and Lee, 2023, Liu et al., 2023, Fu et al., 2023, Kocmi and Federmann,
2023]. Useful LLM-based evaluation for alignment has been done using rubrics [Bai et al., 2022]. We
explore the efficacy of rubrics for evaluation when applied to complex math and physics problems.

3 Benchmark Overview

ARB collects difficult, graduate and PhD level questions across multiple academic disciplines to test
the limits of current LLM models’ reasoning capabilities. We focus on math and physics, while also
including law and MCAT questions to provide a more holistic benchmark.

Table 1: Types of problems in the benchmark by subject area.

Subject Answer Type Number

Physics

Numerical 113
Numerical (w/ image) 18
Symbolic 51
Symbolic (w/ image) 13

Mathematics
Numerical 69
Symbolic 52
Proof-like 19

Law Multiple Choice 627

MCAT (Reading) Multiple Choice 165

MCAT (Science) Multiple Choice 144
Multiple Choice (w/ image) 37

4 Evaluation

We evaluated LLMs on text-only problems from our dataset. In total, we tested: GPT-3.5-turbo
(gpt3.5-turbo-0301), GPT 3.5 (text-davinci-003), GPT-4 (gpt-4-0314), and Claude
(claude-v1.3-100k). We used task-specific instructions and system prompts. Answers were ex-
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tracted using the delimiter ANSWER: , and any response lacking it was marked incorrect. Evaluation
procedures varied for different response types: see Appendix 6 for details.

4.1 Results

Table 2: Manually parsed scores for Math
Symbolic and Physics Symbolic.

Math Physics
gpt-4 15% 20%
gpt-3.5-turbo 12% 8%
text-davinci-003 17% 6%
claude-v1.3 10% 12%

Figure 1: Accuracy on multiple-choice and numerical tasks (relative error threshold of 10−2).

Models perform well on multiple-choice Law and MCAT, but face difficulties with numerical
answers. GPT-4 stands out in simplifying complex expressions, but has issues with arithmetic over
long contexts. For multiple-choice questions, only gpt-3.5-turbo often fails to follow answer
formatting, especially on the Law benchmark, with a 25% unparsable rate. Other models face this
issue in under 5% of questions. Symbolic problem performance is generally low across the board, as
shown in Table 2. It is possible (and likely) that future prompting methods, especially equipped with
external mathematical tools, will get better performance on the benchmark.

As mentioned in Section 2, benchmarks with very high scores are less useful for differentiating
model capabilities. The same holds for benchmarks with very low scores across the board. On
Math Numerical, GPT-4 has slightly lower accuracy than gpt-3.5-turbo on our run; similarly,
text-davinci-003 has similar accuracy as GPT-4 on Math Symbolic. After inspection, this is a
combination of two factors: our dataset having several answers exactly 0 (or Z) and weaker models
“guessing” correctly; and the memorization / faithful reasoning tradeoff discussed in Section 4.2.

4.2 Memorization

While it is difficult to quantify problem leakage and memorization of similar problems, some outputs
suggest this might be a relevant factor. In Table 12, GPT-3.5-turbo appears to “know” the answer to
the problem, given that it gets the formula for the capacitance C correct despite the wrong reasoning.
In contrast, GPT-4 stays faithful to its reasoning chain, resulting in a wrong final answer. Note that
the overall performance of all models is still low, hence not majorly affected by memorization.

4.3 What kind of errors does GPT-4 make?

The GPT-4 evaluation paper [Bubeck et al., 2023] classified errors GPT-4 makes in single-pass
evaluation on GSM8K [Cobbe et al., 2021] and MATH [Hendrycks et al., 2021] into three types:
arithmetic mistakes, misunderstood statement, and wrong approach. We make a more fine-grained
analysis and extended it to a sample (see Appendix 9) of math and physics problems in our dataset:

• Misunderstanding / answering only a part of the question / misread problem;

• Wrong approach: the model’s early chain of thought does not guess the right approach;

• Logical errors: the model uses a false implication between two statements;

• Hallucinating facts or theorems: the model confabulates a false/inapplicable statement;

• Arithmetic error: the model multiplies incorrectly, omits a term in an expression, etc.
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Table 3: Mistakes on mathematics and physics problems in ARB, GPT-4.
Misread Wrong Logical error Arithmetic Correct Correct
problem approach or hallucination mistake answer reasoning

Math Numerical 0% 25% 88% 48% 3% 3%
Math Symbolic 16% 50% 29% 4% 16% 16%
Math Proof-like 5% 50% 72% 16% n/a 5%
Physics Numerical 0% 80% 53% 6% 6% 6%
Physics Symbolic 0% 37% 68% 31% 28% 12%

We graded GPT-4 using the above as a guideline. Our grading of the model’s CoT answers is not
mutually exclusive. Note that the errors might not be independent: arithmetic mistakes could be more
or less frequent in wrong approach solutions as opposed to the solutions with the correct idea.

When the model outputs a chain of implications, it is not always clear whether some false statement is
due to a logical error, or it is a straight-out confabulation. We merge those two error types in Table 3.

Where applicable, slight discrepancy with automatic evaluation is also possible due to the error
tolerance. It is possible that our graders underestimate the rate of arithmetic mistakes in when the
approach is clearly wrong. We note that many of the problems in Physics Symbolic have correct
answers even when there are flaws in the chain of thought reasoning. This is likely due to some kind
of memorization, although not necessarily from the same sources: see Table 12 for an example.

4.4 Model-based Rubric Evaluation

As task complexity increases, evaluating the CoT reasoning becomes challenging. Ideally, LLMs
would grade against a reference solution, but this has reliability issues. To improve this, we introduce
rubrics as an intermediate step: the model forms a rubric from the reference and grades using it.

We rate GPT-4’s rubrics manually, with results shown in Table 4. GPT-4’s rubrics capture key solution
steps, but sometimes misallocate point values. This improves over GPT-3.5-turbo, which often gives
points to irrelevant steps. A clear limitation of rubric scoring is overlooking solutions different from
the reference solution. However, on ARB, GPT-4 rarely produces a correct solution outside the rubric.

Table 4: Evaluations of rubric quality and GPT-4 rubric evaluation failure cases. Rubric coverage and
rubric point spread are on a 1-5 Likert scale. Alternative solutions count solutions that are correct
and not covered by the rubric. Extra/reduced credit track how often GPT-4 erroneously assigns or
deducts points; hallucinated tracks how often GPT-4 gives points not actually present in the rubric.

Physics Symbolic Math Symbolic Proof-like
Rubric coverage 4.42 4.26 3.94
Rubric point spread 4.16 4.00 4.06
Alternative solutions 5% 2% 0%
Extra credit 27% 18% 40%
Reduced credit 11% 12% 5%
Hallucinated rubric 0% 15% 0%

Table 5: Average scores (out of 10 points) when assigned by human annotators versus GPT-4.
Correlation is the Pearson correlation coefficient between the two scores, over all problems.

Physics Symbolic Math Symbolic Proof-like
Human eval score 5.00 3.13 2.65
Model eval score 5.05 3.37 3.80
Correlation 0.91 0.78 0.82

To distinguish two failure modes of creating the rubric and rubric-based grading, we manually graded
GPT-4’s solutions based on its rubrics and compared to our full method (see Table 5). GPT-4’s
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evaluation score correlates closely with the manual score, occasionally deviating by a point or two.
The biggest discrepancy occurs when the model awards partial credit for entirely incorrect solutions,
while human scores remain zero. These findings suggest that rubric-based evaluation is a promising
automated evaluation method.
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5 Benchmark Format and Sources

5.1 Output Formats

The benchmark consists of three types of questions: multiple choice, short answer, and open response,
in descending order of proportion in the dataset.

• Multiple choice questions consist of a question and four to five possible answers, and the
correct answer is the one that best answers the question. Those are only included in the
MCAT and Law portions of the dataset.

• Short answer questions, on the other hand, ask for final answers in the format of a short
phrase or mathematical expression. They were sourced from problem books such as Souza
and Silva [2008], Gelca and Andreescu [2017], and physics book series Lim and Qiang
[2001], Lim [2007], Lim [1998], Lim et al. [2019], and Lim [1996]. We generally avoided
including nontrivial algebraic expressions due to technical difficulties in the grading process.

• Open response questions are more challenging and always require manual grading. Those
were sourced from problem books and exams, such as the Harvard PhD comprehensive
exams in mathematics [Harvard University, 2021].

5.2 Mathematics

This part of the dataset includes mainly problems taughs in univesities at undergraduate and introduc-
tory graduate level, as well as some college contest problems. Contest problems are sourced from
Gelca and Andreescu [2017] and Brayman and Kukush [2018], and university mathematics problems
are sourced from Souza and Silva [2008], Chen and Li [1998] and Harvard University [2021]. The
dataset does not include high school contest problems because those are already covered in other
well-known benchmarks [Hendrycks et al., 2021]. We also select Harvard University [2021] because
it covers topics that other collections of exams rarely cover, such as representation theory of finite
groups and algebraic topology. Most sources contain official solutions, which we also include in the
dataset. This can be useful for automating the grading process, which we explore in Section 4.4.
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5.3 Physics

The physics problems are structured similarly as the math problems. The main difference is that some
physics problems contain figures, and there are more problems with numerical answers. The problems
were sourced from the Major American Universities PhD Qualifying Questions and Solutions series
[Zhongguo-Kexue-Jishu-Daxue, 1990].

5.4 MCAT

The MCAT test contains multiple choice problems testing biology, psychology, chemistry, physics,
and reading comprehension. The MCAT problems are sampled from the third edition of McGraw-Hill
Education 3 MCAT Practice Tests [Campbell et al., 2017] As in the previous categories, we pick
problems which are self-contained. As in Physics, some MCAT problems are accompanied by figures.

5.5 Law

Application of legal knowledge to a particular scenario requires logical reasoning. Most lawyers in
the U.S. go to law school, graduate, then study for the Bar Examination, and then must pass the bar
before going on to practice law professionally. To evaluate legal understanding of the models, we use
an older Bar Examination practice set that is less likely to be available online in a way that could
have led to its legal inclusion in training data for the language models that we are assessing.

6 Evaluation Details

Temperature in all experiments was set to 0.7.

Multiple Choice: Extracted answers (letters) were matched to ground truth for correctness.

Numerical: Answers, often in units, were extracted and units removed using regex. Similarly to
[Lewkowycz et al., 2022], we utilized Python’s SymPy library [Meurer et al., 2017] for parsing.
Correctness was determined using a relative error threshold of 10−2.

Symbolic: Again using SymPy, we attempt to check the equivalence of symbolic equations. However,
not all symbolic answers can be checked in this way, requiring human evaluation. In addition to
human evaluation, we explore using ChatGPT to check the equivalence of symbolic final answers.

Proof-like: Mathematical proofs were evaluated manually by authors with mathematical training,
due to the difficulty of automating the process reliably (see Section 4.4 for more details).

7 Dataset format

The benchmark dataset is available in .jsonl format, containing problem statements, ground truth
solutions, and final ground truth answers for each entry. We additionally include metadata such as
subject names and problem topics, where available.

8 Accessing the dataset

We facilitate access to the dataset through API calls †. The problems are separated by subject area
and output type.

We use an API to host the data (rather than making it publicly available on popular platforms such as
Hugging Face or GitHub) out of concern for data contamination. Many models released in the last few
years have been trained on benchmark datasets [OpenAI, 2023], an approach that could inadvertently
inflate the model’s performance on the associated benchmark. There are other proposed strategies to
mitigate this problem, including dataset poisoning and canary text methods. We choose restricting
dataset accessibility to plain web crawlers to ensure that the dataset must have been deliberately
downloaded by the model creators to end up in the training data.

†The documentation is hosted here: https://advanced-reasoning-benchmark.netlify.app/docs. The root URL
for the API requests is https://advanced-reasoning-benchmark.netlify.app/api/lib/. To download problems, please
use endpoints as described in the documentation.

8

https://advanced-reasoning-benchmark.netlify.app/docs
https://advanced-reasoning-benchmark.netlify.app/api/lib/


9 Error Analysis Details

The distribution of problems might be representative only of a subset of the entire dataset, because the
grading was done before the dataset was finalized; the problems added later are tagged as “additional”
in the dataset entries. For the Symbolic and Numerical subsets (see Table 1), we subsample the
problems to between 20 and 40 per subject area to minimize human grading effort. this is enough for
a ballpark estimate of the frequency of different errors, and is not worth increasing because attributing
error types is inherently fuzzy.

10 Intended Use and Licensing Information

Dataset Intended Uses. The ARB benchmark dataset, as documented in the paper, is primarily
intended for research purposes. We do not condone using this dataset to train models that help
students cheat on exams or for other commercial purposes. We hope that the research community
will use this benchmark to better assess reasoning capabilities of language models.

Author Statement and License. The ARB dataset is licensed under CC BY 4.0, and all helper code
we release or expose via the API is under the MIT license. For all problems originating in books
listed in Section 3, following [Hendrycks et al., 2021], we abide by Fair Use §107: "the fair use
of a copyrighted work, including such use by ... scholarship, or research, is not an infringement of
copyright", where fair use is determined by "the purpose and character of the use, including whether
such use is of a commercial nature or is for nonprofit educational purposes" and "the effect of the use
upon the potential market for or value of the copyrighted work".

11 Prompts for Section 4

For OpenAI chat models (gpt-4 and gpt-3.5-turbo), we prepend the system prompt following
best practices. We do not use the system prompt for the other models, due to there not being a
well-established way to do so, and out of concerns of hurting performance.

Table 6: Prompt used for multiple-choice MCAT and Law problems.

System You are a top graduate student taking an open-ended qualifying exam. Your final
answer should always be in the last line of your response, preceded by ANSWER:.

User

You are a top graduate student taking a qualifying exam. Below you will find a
multiple choice question.

Question: {Problem_Statement}

Answer Choices: {Answer_Choices}

Now it is time to choose an answer. Think carefully and go step by step.
Make sure to justify all your work. Your final answer should be one of A,B,C,D,...
given at the end of your work and preceded by ANSWER:. For example, if you
think the answer is B, the last line of your answer should be ANSWER: B

Solution:
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Table 7: Prompt used for numerical problems.

System You are a top graduate student taking an open-ended qualifying exam. Your final
answer should always be in the last line of your response, preceded by ANSWER:.

User

You are a top graduate student taking an open-ended qualifying exam. Below you
will find a question requiring you to compute a numerical value.

Question: {Problem_Statement}

Now it is time to give your answer. Think carefully and go step by step. Make sure
to justify all your work. Please simplify all expressions as much as possible and do
not leave any variables in your final answer.
Your final answer should NOT contain units and should be given at the end of your
work and preceded by ANSWER:
For example, if you think the answer is 2.4 meters, the last line of your answer
should be ANSWER: 2.4.

Solution:

Table 8: Prompt used for symbolic problems.

System You are a top graduate student taking an open-ended qualifying exam. Your final
answer should always be in the last line of your response, preceded by ANSWER:.

User

You are a top graduate student taking an open-ended qualifying exam. Below you
will find a question requiring you to give a symbolic answer.

Question: {Problem_Statement}

Now it is time to give your answer. Think carefully and go step by step. Make sure
to justify all your work.
Your final answer should NOT contain units and should be given at the end of your
work and preceded by ANSWER:
For example, if you think the answer is x ∗ y, the last line of your answer should be
ANSWER: x ∗ y

Solution:

Table 9: Prompt used for proof-like problems.

System You are a top graduate student taking an open-ended qualifying exam. Your final
answer should always be in the last line of your response, preceded by ANSWER:.

User

You are a top graduate student taking an open-ended qualifying exam. Below you
will find a question requiring you to prove the given statement.

Question: {Problem_Statement}

Now it is time to give your answer. Think carefully and go step by step. Make sure
to justify all your work.

Solution:
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Table 10: Prompt used for GPT-4 rubric self-evaluation.

System You are a top professor grading an open-ended qualifying exam.

User

Problem Statement: {Problem_Statement}
Rubric: {rubric}
Student Answer: {response}

Now it is time to grade the student answer. Make sure to check each point of the
rubric step by step. And make sure to print the total number of earned points at the
end of your grading. For example, if the student earned 8 points, print Rubric Score:
8 points

Rubric Evaluation:

Table 11: Prompt used for GPT-4 rubric design.

System You are a top professor grading an open-ended qualifying exam.

User

Problem Statement: {Sample_Problem_Statement}
Reference Solution: {Sample_Reference_Solution}
Rubric: {Handcrafted_Rubric}

Problem Statement: { Problem_Statement }
Reference Solution: { Solution }

Now it is time to write the rubric. Make sure to think carefully and go step by step,
breaking down the problem into multiple parts. The total number of possible points
should sum to 10.

Rubric:
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Table 12: Example of memorization in ARB. GPT-3.5-turbo’s response indicates memorization of
the correct expression. GPT-4 commits to its reasoning better, resulting in the wrong final answer.

Problem

A cylindrical capacitor of length L consists of an inner conductor wire of radius
a, a thin outer conducting shell of radius b. The space in between is filled with
nonconducting material of dielectric constant ε.
Find the capacitance.

Reference
Solution

Supposing that the charge per unit length of the inner wire is −λ and using cylindrical
coordinates (r, φ, z), we find the electric field intensity in the capacitor by Gauss’
theorem to be

E = − λ

2πεr
er =

−Q

2πεLr
er.

The potential difference between the inner and outer capacitors is

V = −
∫ b

a

E · dr = λ

2πε
ln

(
b

a

)
.

Hence the capacitance is

C =
λL

V
=

2πεL

ln
(
b
a

)

gpt-3.5
-turbo
Solution

The capacitance of a cylindrical capacitor is given by the equation:

C =
2πεL

ln(b/a)

where ε is the dielectric constant, L is the length of the capacitor, a is the radius of
the inner conductor, and b is the radius of the outer conductor.
Therefore, the capacitance of the given cylindrical capacitor is:

C =
2πεL

ln(b/a)
=

2πεL

ln(b)− ln(a)

ANSWER: 2πεL
ln(b)−ln(a)
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Table 12 (continued)

gpt-4
Solution

To find the capacitance of the cylindrical capacitor, we will use the general formula
for capacitance: C = Q

V , where Q is the charge stored in the capacitor and V is the
potential difference between the inner conductor wire and the outer conducting shell.
First, let’s find the electric field E between the two conductors. We can use Gauss’s
law, which states that the electric flux through a closed surface is equal to the charge
enclosed by the surface divided by the permittivity of free space ε0:∮

E⃗ · dA⃗ =
Qenclosed

ε0
.

We will choose a cylindrical Gaussian surface of radius r and length L, where
a < r < b. The electric field is radial, so the electric flux through the curved surface
of the cylinder is: ∮

E⃗ · dA⃗ = E

∮
dA = E(2πrL).

The charge enclosed by the Gaussian surface is the charge on the inner conductor
wire, which is given by its linear charge density λ multiplied by the length of the
Gaussian surface, L: Qenclosed = λL.
Now we can use Gauss’s law to find the electric field:

E(2πrL) =
λL

ε0
⇒ E =

λ

2πrε0
.

However, we need to account for the dielectric material in between the conductors.
The electric field in a dielectric material is related to the electric field in vacuum by
the dielectric constant ε:

Edielectric =
E

ε
.

So, the electric field in the dielectric material is:

Edielectric =
λ

2πrε0ε
.

Now we can find the potential difference between the inner conductor wire and the
outer conducting shell by integrating the electric field along the radial direction:

V = −
∫ b

a

Edielectricdr = −
∫ b

a

λ

2πrε0ε
dr.

Integrating, we get:

V = − λ

2πε0ε
ln(

b

a
).

Finally, we can find the capacitance using the formula C = Q
V :

C =
λL

− λ
2πε0ε

ln( ba )
.

Simplifying, we get:
ANSWER: C = 2πε0εL

ln( b
a )

.
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