
Learning the greatest common divisor
Explainable predictions in transformers

François Charton
Meta

fcharton@meta.com

Abstract

I train small transformers to calculate the greatest common divisor (GCD) of two
positive integers, and show that their predictions are fully explainable. During
training, models learn a list D of divisors, and predict the largest element of D that
divides both inputs. I also show that training distributions have a large impact on
performance. Models trained from uniform operands only learn a handful of GCD
(up to 38 out of 100). Training from log-uniform operands boosts performance to
73 correct GCD, and training from a log-uniform distribution of GCD to 91.

1 Introduction

Transformers [26] have been applied to many problems of mathematics [12, 3, 23, 2]. Yet, they
struggle with basic arithmetic [13, 18, 6], despite recent progress on fine-tuning techniques for large
language models [19, 27, 31]. For instance, experiments with rational arithmetic (Appendix A) show
that while transformers can learn to compare fractions, basic arithmetic operations, like addition or
reduction to lowest terms, are still beyond their reach. On mathematical tasks, transformer predictions
were also found to be brittle [28], to randomly fail on simple problems [5], and to be difficult to
explain, except in the simplest cases [17].

In this paper, 4-layer sequence-to-sequence transformers are trained to compute the greatest common
divisor (GCD) of two positive integers, a key operation for arithmetic on rational numbers, and a
common fixture of number theory. I show that, throughout training, model predictions are fully
explainable. When its operands are encoded in base B, the model learns a set of divisors D, and
predicts, for an input pair (a, b), the largest element in D that divides a and b. For small bases
B, only the products of primes divisors of B are learned, and models trained on composite bases
(e.g. B = 420) can learn to predict up to 38 of the first 100 GCD. For larger bases, small primes
not dividing B are “grokked” [21] when models are trained long enough. I also show that better
performance can be achieved by engineering the training distribution: models trained from log-
uniform operands predict 73 GCD out of 100, and 91 when trained on log-uniform operands and
outcomes, i.e. over-sampling simple examples and large GCD.

2 Experimental settings

GCD calculations are framed as a supervised translation task. Pairs of integers (a, b) are randomly
sampled between 1 and 106, and encoded as sequences of digits in base B, preceded by a sign token
(always + in this paper) which also serves as a separator. 4-layer transformers, with 512 dimensions
and 8 attention heads, are trained to predict gcd(a, b), also encoded in base B, by minimizing the
cross-entropy between model predictions and correct solutions. After each epoch (300,000 examples),
models are tested on two sets of 100,000 examples. The natural test set contains pairs (a, b) uniformly
sampled between 1 and 106. The GCD in this set verify P (gcd(a, b) = k) = 6

π2k2 [1], i.e. small
GCD are more common. In the stratified test set, GCD are uniformly distributed between 1 and 100,

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Workshop on MATH-AI.

i.e. there are about 1000 examples of each GCD. Accuracy on the natural test set is the probability
that the GCD of a random pair of integers is correctly predicted. On the other hand, accuracy on the
stratified test set is the number of GCD under 100 correctly predicted by the model. The size of the
problem space (1012 possible input pairs) guarantees minimal duplication between train and test set.
See appendix B for more details.

3 Learning the greatest common divisor

A model trained on pairs of positive integers under one million, encoded in base B = 10, correctly
predicts 84.7% of the examples in the natural test set, and 13 GCD under 100 (measured on the
stratified test set). Model performance varies with the encoding base: from 61.8% accuracy and 2
correct GCD for base 11, to 96.8% and 38 GCD for base 420. The best performances are achieved
for composite bases (30, 60, 210 and 420), the worst for large primes (Table 1). Learning is very fast:
for base 30, the model achieves 90% accuracy after 2 epochs (600,000 examples), and 93% after 6.
Model size has little impact on performance (Appendix C). For base 30, the same accuracy (93%) is
achieved with 1-layer transformers with 32 dimensions (300,000 parameters) and 24-layer models
with 1024 dimensions (714 million parameters). For base 31, accuracy is 61% for all models.

Base 2 3 4 5 6 7 10 11 12 15

Correct GCD 7 5 7 3 19 3 13 2 19 9
Accuracy 81.6 68.9 81.4 64.0 91.5 62.5 84.7 61.8 91.5 71.7

Base 30 31 60 100 210 211 420 997 1000 1024

Correct GCD 27 2 28 13 32 1 38 1 14 7
Accuracy 94.7 61.3 95.0 84.7 95.5 61.3 96.8 61.3 84.7 81.5

Table 1: Number of correct GCD under 100 and accuracy. Best of 6 experiments.

Table 2 presents, for B = 2, the most frequent model prediction for pairs with a given GCD (Pred),
and its frequency on the stratified test set (%). Detailed results for 6 bases are in Appendix E. All
frequencies are close to 100%: for all test pairs with GCD k, the model makes the same prediction
f(k). Correct predictions (f(k) = k) happen when k is a product of divisors of the base (powers of
two for B = 2). On the other hand, pairs with an odd GCD are always predicted as 1, and pairs with
an even GCD as the largest power of 2 dividing both operands. A likely explanation for these results
is that the model predicts GCD by counting the rightmost zeros in its input. An integer divisible by
2n has n zeros as its rightmost digits, if the operands, a and b have za and zb rightmost zeros in their
base-2 representation, the model predicts 2z , with z = min(za, zb). For instance, it will (correctly)
predict the GCD of 8 = 10002 and 2 = 11002 (2 and 3 rightmost zeros) as 22 = 4, and (incorrectly)
predict the GCD of 7 = 1112 and 14 = 11102 as 1. More generally, model predictions for all bases
can be summed up by the following three rules:

GCD Pred % GCD Pred % GCD Pred %

1 1 100 13 1 100 25 1 100
2 2 100 14 2 100 26 2 100
3 1 100 15 1 100 27 1 100
4 4 100 16 16 100 28 4 100
5 1 100 17 1 100 29 1 100
6 2 100 18 2 100 30 2 100
7 1 100 19 1 100 31 1 100
8 8 100 20 4 100 32 32 99.9
9 1 100 21 1 100 33 1 100

10 2 100 22 2 100 34 2 100
11 1 100 23 1 100 35 1 100
12 4 100 24 8 100 36 4 100

Table 2: Model predictions and their frequencies, for GCD 1 to 36,
and B=2. Correct predictions in bold face.

0 100 200 300 400 500 600 700 800
Epochs

0

5

10

15

20

25

30

35

base
420
210
30

Table 3: Correct GCD vs training time.
Natural (1

k2) distribution of GCD.

(R1) Predictions are deterministic. The model predicts a unique value f(k) for almost all (99.9%)
pairs of integers with GCD k. Predictions are correct when f(k) = k.

2

(R2) Correct predictions are products of primes dividing B. For base 2, they are 1, 2, 4, 8, 16,
32 and 64. For base 31, 1 and 31. For base 10, all products of elements from {1, 2, 4, 8, 16}
and {1, 5, 25}. For base 30, all products of {1, 2, 4, 8}, {1, 3, 9, 27} and {1, 5, 25}.

(R3) f(k) is the largest correct prediction that divides k. For instance, f(8) = 8, and f(7) = 1,
for base 2 and 10, but f(15) = 5 for base 10 and f(15) = 1 for base 2.

All learning curves have a step-like shape (Figure 3). GCD are learned in batches: the model learns
a power of a prime divisor of B, and all its products with already known GCD. For instance, for
B = 30, the model initially predicts {1, 2, 4}, {1, 3, 9}, {1, 5} and their products: 17 GCD under
100. Around epoch 50, the model learns 25 and the three associated multiples 50, 75 and 100 (21
GCD). Around epoch 220, it learns 8, 24, 40 and 72, and around epoch 660, it learns 27 and 54, for
a grand total of 27 correct GCD. For base 210, the model begins wit the 20 products of {1, 2, 4},
{1, 3}, {1, 5} and {1, 7}. It learns 9 and 5 multiples at epoch 30, 25 and three multiples at epoch
400, and 49 and 98 at epoch 500, for a total of 32 correct GCD. During training, the three rules hold
at all times.

In these experiments, models cannot compute GCD in the general case. Instead, they leverage
representation shortcuts to predict a small number of easy, but common instances: products of
divisors of the base. As a result, to achieve high performance, one must select a base divisible by
many small primes, e.g. small multiples of 30 or 210. Yet, all models learned to classify pairs of
integers according to their GCD, and make a unique prediction f(k) for all pairs with GCD k. This
is an important result and a significant achievement.

Large bases and grokking. When models using large bases are trained for a long time, a phenomenon
similar to grokking [21] is observed. Figure 1 presents learning curves (loss and correct GCD) for
B = 2023 = 7 · 172. After about 10 epochs, 3 GCD (1, 7 and 17) are learned, as per the three rules.
The training loss is flat for the next 100 to 200 epochs (the duration varies with model initialization),
and it looks like the model is no longer learning. Around epoch 100, GCD 3 is learned, together
with 21 = 3 · 7 and 51 = 3 · 17, in just a few epochs. Then, 2, 6, 14, 34, 42 are learned at epoch
200, and 4 and associated multiples at epoch 600, for a total of 16 correct GCD. During training,
model predictions still respect rules R1 and R3 (Table 10), only rule R2 must be updated to: correct
predictions are products of primes divisors of B, and small primes, learned (roughly) in order.

0 100 200 300 400 500 600 700 800
Epochs

0

2

4

6

8

10

12

14

16

GCD predicted

0 100 200 300 400 500 600 700 800
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 Train loss

Figure 1: Learning curves for base B=2023. 3 different model initializations.

Table 11 presents results for 16 large bases, with models trained up to 1300 epochs. Grokking
usually sets in late during training, and most of the time, primes and powers of primes are grokked in
order. Because it helps learn small GCD, grokking boosts model accuracy (from 63% to 91% for
B = 2023), but overall the number of correct GCD remains low (under 30 for all large bases).

4 Learning from log-uniform operands

So far, all pairs (a, b) in the training sets are uniformly sampled between 1 and 106. As a result,
models are mostly trained from examples with large operands. 90% of operands are larger than
100,000, and small instances, like gcd(6, 9), are almost never encountered. This contrast with the
way we are taught, and teach, arithmetic. We usually insist that small examples should be mastered,
and sometimes memorized, before larger instances, like gcd(102370, 102372) can be tackled. In
this section, training pairs are sampled from a log-uniform distribution, by uniformly sampling real

3

Base Accuracy Correct GCD Base Accuracy GCD Base Accuracy GCD

2 94.4 25 60 98.4 60 2025 99.0 70
3 96.5 36 100 98.4 60 2187 98.7 66
4 98.4 58 210 98.5 60 2197 98.8 68
5 97.0 42 211 96.9 41 2209 98.6 65
6 96.9 39 420 98.1 59 2401 99.1 73
7 96.8 40 625 98.2 57 2744 98.9 72
10 97.6 48 997 98.3 64 3125 98.6 65
11 97.4 43 1000 99.1 71 3375 98.8 67
12 98.2 55 1024 99.0 71 4000 98.7 66
15 97.8 52 2017 98.6 63 4913 98.2 57
30 98.2 56 2021 98.6 66 5000 98.6 64
31 97.2 44 2023 98.7 65 10000 98.0 56

Table 4: Accuracy and correct GCD (up to 100), log-uniform operands. Best of three models, trained for
1000 epochs (300M examples). All models are tested on 100,000 pairs, uniformly distributed between 1 and 106.

numbers 0 ≤ x ≤ logM , computing ex and rounding to the nearest integer. In this setting, there are
as many 1-digit as 6-digit operands in the training set. In 3% of training examples, both operands
are smaller than 10. In 11%, they are smaller than 100. This presents the model with many simple
examples that it can memorize, just like children rote learn multiplication and addition tables.

Note that this is different from curriculum learning: the training distribution is not modified during
training. Note also that log-uniform sampling only applies to the training set (test sets are unchanged)
and that it has no impact on the distribution of outcomes.

Training from log-uniform operands greatly improves performance (Table 4). Accuracy for all bases
is between 94 and 99%, vs 61 and 97% with uniform operands. Up to 73 GCD are correctly predicted
(for B = 2401), vs 38 with uniform operands. Overall, log-uniform operands accelerate grokking.
For the best models, all primes up to 23, some of their small powers, and all associated multiples are
learned. This brings model accuracy on random pairs to 99%, and the number of correct GCD under
100 to 73. The three rules still apply: predictions are deterministic, for a pair (a, b) with GCD k, the
model predicts the largest correct GCD that divides k.

During training, rules G1 and G3 are temporarily violated when the model learns a new divisor. For a
few epochs, model predictions are split between the old and the new value (e.g. between 7 and 49
when the model is learning 49). This situation, rarely observed in previous experiments, is common
with log-uniform operands. The learning curves are smoother, and transitions span several epochs.

Log-uniform outcomes. Model performance can be further improved by balancing the distribution
of GCD in the training set – i.e. making it scale as 1

k instead of 1
k2 (Table 5). In this setting, models

with base larger than 1000 predict 87 to 91 GCD: all primes up to 53 and all composite numbers up
to 100. These are our best results.

Base Accuracy Correct GCD Base Accuracy GCD Base Accuracy GCD

2 16.5 17 60 96.4 75 2025 97.9 91
3 93.7 51 100 97.1 78 2187 97.8 91
4 91.3 47 210 96.2 80 2197 97.6 90
5 92.2 58 211 95.3 67 2209 97.6 87
6 95.2 56 420 96.4 88 2401 97.8 89
7 93.0 63 625 96.0 80 2744 97.6 91
10 94.3 65 997 97.6 83 3125 97.7 91
11 94.5 57 1000 97.9 91 3375 97.6 91
12 95.0 70 1024 98.1 90 4000 97.3 90
15 95.4 62 2017 97.6 88 4913 97.1 88
30 95.8 72 2021 98.1 89 5000 97.1 89
31 94.4 64 2023 97.5 88 10000 95.2 88

Table 5: Accuracy and correct GCD, log-uniform operands and outcomes. Best model of 3.

5 Related work

Neural networks for arithmetic were first proposed by Siu and Roychowdury [24], and recurrent
models by Kalchbrenner et al.[10], Zaremba et al. [29] and Kaiser and Sutskever [9]. Most recent

4

research focuses on fine-tuning LLM on arithmetic tasks, to solve math word problems [15, 7]. See
Lee et al. [13] for a summary. As an alternative, Neural Arithmetic Logical Units [25, 16] learn exact
computations that can generalize to any input, by constraining the weights of linear layers to be close
to 0, 1 or −1.

The difficulty of learning arithmetic tasks was discussed by many authors. Saton et al. [22],
benchmarking mathematical tasks, observe that number theoretic operations, like factorization, are
hard. Palamas [20] further investigates the hardness of modular arithmetic. Dziri et al. [6] note the
difficulty of extending the promising results obtained by Lee et al. [13] on the four operations to
complex mathematical algorithms (like Euclid’s algorithm for the GCD, considered here).

The role of number representation was discussed by Noguera et al. [18] and Charton [2]. Grokking
was first described by Power et al. [21]. Liu et al. [14] propose metrics to characterize it. Gromov [8]
provides an insightful analysis of grokking in feed-forward networks. Most prior work on explain-
ability in arithmetic transformers tries to interpret model weights [17, 30]. [4] proposes a similar
analysis for linear algebra.

6 Conclusion

Model explainability is probably the most striking feature of these experiments. It is often repeated
that transformers are incomprehensible black-boxes, that sometimes confabulate and often fail in
unpredictable ways. Here, model predictions can be fully explained by a small number of rules,
which suggests that transformers learn a sieve algorithm for computing GCD.

Specifically, the model learns rules for divisibility, uses them to partition its inputs into classes
of pairs sharing a common divisor, and predicts each class as its minimum (and most common)
member. Divisors of the encoding base, which can be tested by looking at the rightmost digits in
the representation of inputs, are learned first. For base 2, the model classifies its inputs into pairs
divisible by 1, 2, 4 or 8. As training proceeds, new prime divisors are learned, roughly in order. They
are all prime because multiples of previous divisors were learned already, i.e. the model functions
like a sieve. When a new divisor p is learned, new classes are created by splitting all existing classes
between multiples and non-multiples of p. In base 2, when the model learns divisibility by 3, six new
classes are created: multiples of 3, 6, 12, 24, 48 and 96. Eventually, all GCD will be learned. This
algorithm is not related to Euclid’s algorithm, and less efficient.

This approach to explainability differs from most works on the subject. Instead of looking at model
parameters, experiments are engineered, that reveal the algorithms that the model is implementing.
This is a promising direction for future research.

The role of training distributions is another important result. The best models are trained from
log-uniform operands and outcomes. All models are tested on sets with uniform operands, but our
best results are achieved with a log-uniform distribution of operands and outcomes in the training set.
This may come as a surprise, since many authors observed that evaluating a model out of its training
distribution has a negative impact on performance. The existence of special training distributions, that
allow for faster learning and more robust models (with respect to out-of-distribution generalization)
was already observed for linear algebra [4]. Log-uniform operands help the model learn the large
instances of the problem by memorizing small, and easier, cases. This is related to curriculum
learning, but because the training distribution never changes, it prevents catastrophic forgetting. A
log-uniform distribution of outcomes helps balance the training set by making large GCD more
common.This is a classic recipe in machine learning: classifiers are usually trained on balanced
datasets. These findings may apply to other arithmetic tasks, notably fine-tuning large language
models on math word problems.

Is it really grokking? The characterization of the phenomenon observed in section 3 as grokking
is not entirely correct. Power [21] defines grokking as “generalization far after overfitting.” In our
experiments, training and test data are generated on the fly from a very large problem space. No
overfitting can happen, and the classical pattern of grokking, train accuracy dropping, and validation
accuracy catching up after a long time, will not occur. The similarity with grokking lies in the sudden
change in accuracy after a long stagnation of the training loss.

5

References
[1] Ernesto Cesàro. Question 75 (solution). Mathesis, (3):224–225, 1883.

[2] François Charton. Linear algebra with transformers. arXiv preprint arXiv:2112.01898, 2021.

[3] François Charton, Amaury Hayat, and Guillaume Lample. Learning advanced mathematical
computations from examples. arXiv preprint arXiv:2006.06462, 2020.

[4] François Charton. What is my math transformer doing? – three results on interpretability and
generalization. arXiv preprint arXiv:2211.00170, 2022.

[5] Ernest Davis. Mathematics, word problems, common sense, and artificial intelligence, 2023.

[6] Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin,
Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal, Sean
Welleck, Xiang Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. Faith and fate: Limits
of transformers on compositionality, 2023.

[7] Kaden Griffith and Jugal Kalita. Solving arithmetic word problems with transformers and
preprocessing of problem text. arXiv preprint arXiv:2106.00893, 2021.

[8] Andrey Gromov. Grokking modular arithmetic, 2023.

[9] Łukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. arXiv preprint
arXiv:1511.08228, 2015.

[10] Nal Kalchbrenner, Ivo Danihelka, and Alex Graves. Grid long short-term memory. arXiv
preprint arxiv:1507.01526, 2015.

[11] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[12] Guillaume Lample and François Charton. Deep learning for symbolic mathematics. arXiv
preprint arXiv:1912.01412, 2019.

[13] Nayoung Lee, Kartik Sreenivasan, Jason D. Lee, Kangwook Lee, and Dimitris Papailiopoulos.
Teaching arithmetic to small transformers. arXiv preprint arXiv:2307.03381, 2023.

[14] Ziming Liu, Ouail Kitouni, Niklas Nolte, Eric J. Michaud, Max Tegmark, and Mike Williams.
Towards understanding grokking: An effective theory of representation learning, 2022.

[15] Yuanliang Meng and Anna Rumshisky. Solving math word problems with double-decoder
transformer. arXiv preprint arXiv:1908.10924, 2019.

[16] Bhumika Mistry. An investigation into neural arithmetic logic modules. PhD thesis, University
of Southampton, July 2023.

[17] Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress
measures for grokking via mechanistic interpretability, 2023.

[18] Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. Investigating the limitations of transformers
with simple arithmetic tasks. arXiv preprint arXiv:2102.13019, 2021.

[19] Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin,
David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton,
and Augustus Odena. Show your work: Scratchpads for intermediate computation with language
models. arXiv preprint arXiv:2112.00114, 2021.

[20] Theodoros Palamas. Investigating the ability of neural networks to learn simple modular
arithmetic. 2017.

[21] Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization Beyond Overfitting on Small Algorithmic Datasets. arXiv preprint arXiv:2201.02177,
2022.

6

[22] David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical
reasoning abilities of neural models, 2019.

[23] Feng Shi, Chonghan Lee, Mohammad Khairul Bashar, Nikhil Shukla, Song-Chun Zhu, and
Vijaykrishnan Narayanan. Transformer-based Machine Learning for Fast SAT Solvers and
Logic Synthesis. arXiv preprint arXiv:2107.07116, 2021.

[24] Kai-Yeung Siu and Vwani Roychowdhury. Optimal depth neural networks for multiplication
and related problems. In S. Hanson, J. Cowan, and C. Giles, editors, Advances in Neural
Information Processing Systems, volume 5. Morgan-Kaufmann, 1992.

[25] Andrew Trask, Felix Hill, Scott Reed, Jack Rae, Chris Dyer, and Phil Blunsom. Neural
arithmetic logic units. arXiv preprint arXiv:1808.00508, 2018.

[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

[27] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi,
Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models, 2023.

[28] Sean Welleck, Peter West, Jize Cao, and Yejin Choi. Symbolic Brittleness in Sequence Models:
on Systematic Generalization in Symbolic Mathematics, 2021.

[29] Wojciech Zaremba, Tomas Mikolov, Armand Joulin, and Rob Fergus. Learning simple algo-
rithms from examples, 2015.

[30] Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. The clock and the pizza: Two
stories in mechanistic explanation of neural networks, 2023.

[31] Hattie Zhou, Azade Nova, Hugo Larochelle, Aaron Courville, Behnam Neyshabur, and
Hanie Sedghi. Teaching algorithmic reasoning via in-context learning. arXiv preprint
arXiv:2211.09066, 2022.

Appendix

A Rational arithmetic with transformers

In these experiments, transformers are trained to perform five arithmetic operations on positive
rational numbers:

• comparison: given four positive integers a, b, c and d, predict whether ab < c
d .

• Integer division: given two integers a and b, predict the integer bab c.
• Addition: given four integers a, b, c and d, predict the sum a

b +
c
d , in lowest terms.

• Multiplication: given four integers a, b, c and d, predict the product ab ×
c
d , in lowest terms.

• Simplification: given two integers a and b, predict the lowest term representation of ab , i.e.
c
d with c = a

gcd(a,b) and d = b
gcd(a,b) .

For the comparison, addition and multiplication tasks, all integers a, b, c and d are uniformly sampled
between 1 and M (M=100,000 or 1,000,000).

For the simplification task, 3 integers m,n, p are uniformly sampled between 1 and M , we let
a = pm

gcd(m,n) and b = pn
gcd(m,n) and the model is tasked to predict a and b.

For the integer division task, 3 integers m,n, p are uniformly sampled between 1 and M , with m < n,
we let a = pn+m and b = n, and the model is tasked to predict p = bab c.
All integers are encoded as sequences of digits in base B (see section 2). Sequence to sequence
transformers with 4 layers, 512 dimensions and 8 attention heads are trained to minimize a cross-
entropy loss, using Adam with learning rate 10−4, inverse square root scheduling, linear warmup over

7

10, 000 optimization steps, and a batch size of 256. After each epoch (300,000 examples), models
are tested on 100,000 random examples.

Comparison is learned to very high accuracy, and integer division to some extent. On the other
hand, the three tasks involving GCD calculations (simplification, addition and multiplication) are not
learned (Table A).

Comparison Integer division Simplification Addition Multiplication
Base M=105 M=106 M=105 M=106 M=105 M=106 M=105 M=106 M=105 M=106

10 100 100 21.2 2.4 0.14 0.02 0 0 0 0
30 99.9 100 14.2 2.2 0.21 0.02 0 0 0 0
31 99.9 100 14.3 2.4 0.02 0 0 0 0 0
1000 100 99.9 8.8 0.7 0.09 0.01 0 0 0 0

Table 6: Rational arithmetic with transformers. Accuracy of trained models Best of 3 models, trained for
1000 to 1500 epochs.

B More experimental settings

Integer encodings. Operands and outcomes are encoded as sequences of digits in base B, preceded
by a sign which also serves as a separator (Table 7). In base 10, the input pair (8, 12) is encoded
as the sequence ‘+ 8 + 1 2’, and its GCD, 4, as ‘+ 4’. The choice of B is a trade-off. Small
bases result in longer sequences that are harder to learn, but use a small vocabulary that is easier to
memorize. Composite bases allow for simple tests of divisibility: in base 10, divisibility by 2, 5 and
10 is decided by looking at the rightmost token in the sequence.

Base Encoded input Encoded output

2 [+,1,0,1,0,0,0,0,0,+,1,1,1,1,0,0,0] [+,1,0,1,0,0,0]
6 [+,4,2,4,+,3,2,0] [+,1,0,4]
10 [+,1,6,0,+,1,2,0] [+,4,0]
30 [+,5,10,+,4,0] [+,1,10]

Table 7: Encoding gcd(160,120) = 40, in base 2, 6, 10 and 30

Sequence-to-sequence transformers with 4 layers, 512 dimensions and 8 attention heads are trained,
using Adam [11] with a learning rate of 10−5 (no scheduling is needed) on batches of 256 examples.
After each epoch (300,000 examples), models are tested on 100,000 held-out examples. The size of
the problem space (1012 possible input pairs) guarantees minimal duplication between train and test
set. All experiments are run on one NVIDIA V100 GPU with 32 GB of memory.

Training examples are generated by uniformly sampling integers between 1 and 106 and computing
their GCD. All models are tested on two sets. In the natural test set, pairs (a, b) are uniformly
distributed, and their GCD verify P (gcd(a, b) = k) = 6

π2k2 [1], i.e. small GCD are more common.
In the stratified test set, GCD are uniformly distributed between 1 and 100, i.e. there are about 1000
test examples with GCD k, for every k ≤ 100. The stratified set is generated as follows:

• Sample k, uniformly between 1 and 100.
• Sample a and b, uniformly between 1 and M

k , such that gcd(a, b) = 1
• Add (ka, kb) to the stratified test set.

These two test sets provide us with two measures of accuracy. Model accuracy, measured on the
natural set, is the probability that the GCD of two random integers from 1 to M is correctly predicted.
On the stratified test set, it is the number of GCD correctly predicted between 1 and 100.

C Model scaling for the base experiments

Section 3 presents results for 4-layer transformers with 512 dimensions and 8 attention heads. In
this section, I experiment with very small models (down to 1 layer and 32 dimensions), and very
large ones (up to 24 layers and 1024 dimensions). Note: in Tables 8 and 9, the number of trainable

8

parameters are indicated for base 10, they will be larger for larger bases, because larger vocabularies
increase the number of parameters in the embedding and decoding layers.

Table 8 presents accuracies for models with one layer, 8 attention heads, and 32 to 512 dimensions.
These models have 3 to 100 times less parameters that the 4-layer baseline, but there is no significant
change in trained model accuracy for 12 different bases.

Table 9 presents results for models from 6 to 24 layers, symmetric (same number of layers in the
encoder and decoder), or asymmetric (using a one-layer encoder or decoder). The dimensions are
512, 640, 768 and 1024 for 6, 8, 12, and 24 layers, and the dimension-to-attention-heads ratio is kept
constant at 64 (i.e.there are 8, 10, 12 and 24 attention heads respectively). Again, model size has no
significant impact on accuracy.

Overall, these scaling experiments suggest that trained model performance is stable over a wide range
of model size (300 thousands to 700 millions parameters). These results are strikingly different from
what is commonly observed in Natural Language Processing, where very small transformers (under a
few million parameters) cannot learn, and accuracy improves with model size.

512 dimensions 256 dim. 128 dim. 64 dim. 32 dim. 4-layer baseline
Base 11.6M 4.0M 1.7M 0.6M 0.3M 33.7M

2 81.3 81.4 81.4 81.4 81.2 81.6
3 68.8 68.9 68.7 68.8 68.7 68.9
4 81.4 81.4 81.4 81.4 81.4 81.4
5 64.0 63.7 63.8 63.7 63.8 64.0
6 91.3 91.3 91.1 91.1 90.7 91.5
7 62.5 62.4 62.5 62.5 62.5 62.5

10 84.4 84.3 84.3 84.4 84.2 84.7
11 61.7 61.7 61.7 61.9 61.7 61.8
12 91.4 91.4 91.3 91.3 91.1 91.5
15 71.6 71.6 71.5 71.5 71.4 71.7
30 94.6 93.8 93.5 93.7 93.3 94.7
31 61.3 61.3 61.2 61.3 61.3 61.3

Table 8: Model accuracies for different dimensions and numbers of parameters. All models have one layer
and 8 attention heads. Parameter counts for base 10.

1/6 6/1 6/6 1/8 8/1 8/8 1/12 12/1 12/12 1/24 24/1 24/24
Base 32.5 27.3 48.3 59.1 48.4 97.1 117.1 94.7 204.8 387.4 313.3 713.8

2 81.3 81.3 81.4 81.5 81.4 81.3 81.3 81.3 81.4 - 81.4 -
3 68.7 68.8 68.7 68.8 68.9 69.0 68.9 68.8 68.8 68.8 68.6 -
4 81.3 81.4 81.4 81.4 81.4 81.6 81.4 81.4 81.4 81.5 81.4 81.3
5 63.8 63.8 63.7 63.8 63.6 63.7 63.7 63.7 63.6 63.9 63.7 63.6
6 91.3 91.1 91.3 91.3 91.4 91.3 91.3 91.0 91.0 91.3 91.0 90.9
7 62.6 62.6 62.4 62.5 62.4 62.6 62.5 62.4 62.4 62.4 62.3 62.2

10 84.3 84.2 84.4 84.7 84.4 84.5 84.4 84.4 83.4 84.5 83.4 83.3
11 61.8 61.7 61.6 61.7 61.8 61.7 62.0 61.6 61.7 61.7 61.6 61.6
12 91.4 91.3 91.3 91.4 91.5 91.4 81.4 91.2 91.2 91.4 91.3 91.2
15 71.5 71.5 71.4 71.5 71.5 71.5 71.4 71.5 71.5 71.5 70.6 71.4
30 94.6 93.4 93.5 94.7 93.6 93.6 94.7 93.6 93.6 93.5 93.4 93.4
31 61.2 61.2 61.3 61.2 61.3 61.2 61.4 61.2 61.3 61.4 61.3 61.1

Table 9: Model accuracies for different depths and number of parameters (in millions). 1 and 6 layer
models have 512 dimensions and 8 heads, 8-layer have 640 dimensions and 10 heads, 12-layer 768 dimensions
and 12 heads, 24-layer models have 1024 dimensions and 16 heads. The largest base 2 and 3 models could not
run on one 32GB GPU. All model parameters for base 10.

9

D Additional results on grokking

GCD Prediction GCD Prediction GCD Prediction GCD Prediction GCD Prediction

1 1 11 1 21 3 31 1 41 1
2 2 12 12 22 2 32 16/ 32 42 6
3 3 13 1 23 1 33 3 43 1
4 4 14 2 24 24 34 2 44 4
5 5 15 15 25 25 35 5 45 15
6 6 16 16 26 2 36 12 46 2
7 1 17 1 27 3 37 1 47 1
8 8 18 6 28 4 38 2 48 48
9 3 19 1 29 1 39 3 49 1

10 10 20 20 30 30 40 40 50 50
Table 10: Model predictions. B = 1000, after 220 epochs. 32 is being learned.

Base GCD predicted Divisors predicted Non-divisors (epoch learned)

625 = 54 6 {1,5,25} 2 (634)
2017 4 {1} 2 (142), 3 (392)
2021 = 43.47 10 {1,43}, {1,47} 2 (125), 3 (228)
2023 = 7.172 16 {1,7}, {1,17} 3 (101), 2 (205), 4 (599)
2025 = 34.52 28 {1,3, 9, 27, 81}, {1,5,25} 2 (217), 4 (493), 8 (832)
2187 = 37 20 {1,3,9,27,81} 2 (86), 4 (315) , 5 (650)
2197 = 133 11 {1,13} 2 (62), 3 (170), 4 (799)
2209 = 472 8 {1,47} 2 (111), 3 (260), 9 (937)
2401 = 74 10 {1,7,49} 2 (39), 3 (346)
2401 = 74 14 {1,7,49} 3 (117), 2 (399), 4 (642)
2744 = 23.73 30 {1,2,4,8,16,32}, {1,7,49} 3 (543), 5 (1315)
3125 = 55 16 {1,5,25} 2 (46), 3 (130), 4 (556)
3375 = 33.53 23 {1,3,9,27}, {1,5,25} 2 (236), 4 (319)
4000 = 25.53 24 {1,2, 4,8,16,32}, {1, 5, 25 } 3 (599)
4913 = 173 17 {1,17} 2 (54), 3 (138), 4 (648), 5 (873)
5000 = 23.54 28 {1,2,4,8,16,32}, {1,5,25} 3 (205), 9 (886)
10000 = 24.54 22 {1,2,4,8,16}, {1,5,25} 3 (211)

Table 11: Predicted gcd, divisors and non-divisors of B. Best model of 3. For non-divisors, the epoch learned
is the first epoch where model achieves 90% accuracy for this GCD.

10

E Detailed model predictions

Table 12: Predicted values for gcd 1 to 63.

Base 2 4 10 30 31 420
GCD Prediction % Pred. % Pred. % Pred. % Pred. % Pred. %

1 1 100 1 100 1 100 1 100 1 100 1 100
2 2 100 2 100 2 100 2 100 1 100 2 100
3 1 100 1 100 1 100 3 100 1 100 3 100
4 4 100 4 100 4 100 4 100 1 100 4 100
5 1 100 1 100 5 100 5 100 1 100 5 100
6 2 100 2 100 2 100 6 100 1 100 6 99.6
7 1 100 1 100 1 100 1 100 1 100 7 100
8 8 100 8 100 8 100 8 100 1 100 8 100
9 1 100 1 100 1 100 9 100 1 100 9 100
10 2 100 2 100 10 100 10 100 1 100 10 100
11 1 100 1 100 1 100 1 100 1 100 1 100
12 4 100 4 100 4 100 12 100 1 100 12 99.8
13 1 100 1 100 1 100 1 100 1 100 1 100
14 2 100 2 100 2 100 2 100 1 100 14 100
15 1 100 1 100 5 100 15 100 1 100 15 99.4
16 16 100 16 100 16 99.7 8 100 1 100 16 100
17 1 100 1 100 1 100 1 100 1 100 1 100
18 2 100 2 100 2 100 18 100 1 100 18 100
19 1 100 1 100 1 100 1 100 1 100 1 100
20 4 100 4 100 20 100 20 100 1 100 20 100
21 1 100 1 100 1 100 3 100 1 100 21 100
22 2 100 2 100 2 100 2 100 1 100 2 100
23 1 100 1 100 1 100 1 100 1 100 1 100
24 8 100 8 100 8 100 24 100 1 100 24 100
25 1 100 1 100 25 100 25 99 1 100 25 99.9
26 2 100 2 100 2 100 2 100 1 100 2 100
27 1 100 1 100 1 100 9 100 1 100 9 100
28 4 100 4 100 4 100 4 100 1 100 28 100
29 1 100 1 100 1 100 1 100 1 100 1 100
30 2 100 2 100 10 100 30 100 1 100 30 99.6
31 1 100 1 100 1 100 1 100 31 100 1 100
32 32 99.9 32 98.7 16 99.9 8 100 1 100 16 100
33 1 100 1 100 1 100 3 100 1 100 3 100
34 2 100 2 100 2 100 2 100 1 100 2 100
35 1 100 1 100 5 100 5 100 1 100 35 100
36 4 100 4 100 4 100 36 100 1 100 36 100
37 1 100 1 100 1 100 1 100 1 100 1 100
38 2 100 2 100 2 100 2 100 1 100 2 100
39 1 100 1 100 1 100 3 100 1 100 3 99.9
40 8 99.9 8 100 40 99.9 40 100 1 100 40 99.9
41 1 100 1 100 1 100 1 100 1 100 1 100
42 2 100 2 100 2 100 6 99.9 1 100 42 100
43 1 100 1 100 1 100 1 100 1 100 1 100
44 4 100 4 100 4 100 4 100 1 100 4 100
45 1 100 1 100 5 100 45 100 1 100 45 99.8
46 2 100 2 100 2 100 2 100 1 100 2 100
47 1 100 1 100 1 100 1 100 1 100 1 100
48 16 100 16 100 16 99.9 24 100 1 100 48 99.9
49 1 100 1 100 1 100 1 100 1 100 7 100
50 2 100 2 100 50 100 50 100 1 100 50 99.6
51 1 100 1 100 1 100 3 100 1 100 3 99.8
52 4 100 4 100 4 100 4 100 1 100 4 100
53 1 100 1 100 1 100 1 100 1 100 1 100
54 2 100 2 100 2 100 18 99.9 1 100 18 100
55 1 100 1 100 5 100 5 100 1 100 5 100
56 8 100 8 100 8 99.9 8 100 1 100 56 100
57 1 100 1 100 1 100 3 100 1 100 3 99.9
58 2 100 2 100 2 100 2 100 1 100 2 100
59 1 100 1 100 1 100 1 100 1 100 1 100
60 4 100 4 100 20 100 60 100 1 100 60 99.7
61 1 100 1 100 1 100 1 100 1 100 1 100
62 2 100 2 100 2 100 2 100 31 100 2 100
63 1 100 1 100 1 100 9 100 1 100 63 100

11

Table 13: Predicted values for gcd 64 to 100.

Base 2 4 10 30 31 420
GCD Prediction % Pred. % Pred. % Pred. % Pred. % Pred. %

64 64 98.9 64 99.2 16 99.8 8 100 1 100 16 100
65 1 100 1 100 5 100 5 100 1 100 5 100
66 2 100 2 100 2 100 6 100 1 100 6 100
67 1 100 1 100 1 100 1 100 1 100 1 100
68 4 100 4 100 4 100 4 100 1 100 4 100
69 1 100 1 100 1 100 3 100 1 100 3 100
70 2 100 2 100 10 100 10 100 1 100 70 100
71 1 100 1 100 1 100 1 100 1 100 1 100
72 8 100 8 100 8 100 72 100 1 100 72 100
73 1 100 1 100 1 100 1 100 1 100 1 100
74 2 100 2 100 2 100 2 100 1 100 2 100
75 1 100 1 100 25 100 75 100 1 100 75 99.4
76 4 100 4 100 4 100 4 100 1 100 4 100
77 1 100 1 100 1 100 1 100 1 100 7 100
78 2 100 2 100 2 100 6 100 1 100 6 100
79 1 100 1 100 1 100 1 100 1 100 1 100
80 16 100 16 100 80 99.9 40 100 1 100 80 100
81 1 100 1 100 1 100 9 100 1 100 9 99.8
82 2 100 2 100 2 100 2 100 1 100 2 100
83 1 100 1 100 1 100 1 100 1 100 1 100
84 4 100 4 100 4 100 12 100 1 100 84 100
85 1 100 1 100 5 100 5 100 1 100 5 100
86 2 100 2 100 2 100 2 100 1 100 2 100
87 1 100 1 100 1 100 3 100 1 100 3 99.8
88 8 100 8 100 8 100 8 100 1 100 8 100
89 1 100 1 100 1 100 1 100 1 100 1 100
90 2 100 2 100 10 100 90 100 1 100 90 99.9
91 1 100 1 100 1 100 1 100 1 100 7 100
92 4 99.9 4 100 4 100 4 100 1 100 4 100
93 1 100 1 100 1 100 3 100 31 99.9 3 99.8
94 2 100 2 100 2 100 2 100 1 100 2 100
95 1 100 1 100 5 100 5 100 1 100 5 100
96 32 100 32 99.5 16 99.8 24 100 1 100 48 99.9
97 1 100 1 100 1 100 1 100 1 100 1 100
98 2 100 2 100 2 100 2 100 1 100 14 100
99 1 100 1 100 1 100 9 100 1 100 9 99.8

100 4 100 4 100 100 100 100 100 1 100 100 99.6

12

	Introduction
	Experimental settings
	Learning the greatest common divisor
	Learning from log-uniform operands
	Related work
	Conclusion
	Rational arithmetic with transformers
	More experimental settings
	Model scaling for the base experiments
	Additional results on grokking
	Detailed model predictions

