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Abstract

Recent language models have struggled to generalize to a large range of numbers in
numerical reasoning. In this paper, we propose a novel method that leverages simple
numbers as anchors to elicit the implicitly inferred arithmetic expressions from
language models, and then explicitly applies the expressions to original numbers to
get the answers. Experimental results on several numerical reasoning benchmarks
demonstrate that our approach is highly effective. More importantly, our approach
works in the inference phase without extra model training, making it highly portable
and achieving significant and consistent performance benefits across a variety of
language models in zero-shot, few-shot, and fine-tuning scenarios.

1 Introduction

Language Models (LMs) have demonstrated great success on a wide range of natural language tasks [5,
2, 3], but their performance slumps when it comes to reasoning about numbers. Even rational numbers,
a small subset of real numbers, comprise an infinite space that pre-training corpora cannot cover
entirely, creating a severe obstacle to LMs. Recent works have shown strong context understanding
capabilities of LMs in numerical reasoning datasets [6, 4], but LMs are still far from being reliable
on end-to-end numerical calculation [12, 13]. According to our preliminary study, whose details can
be found in Appendix A, the performance of LMs drops significantly as the input numbers get more
complex. Similar observations are also reported by Razeghi et al. [16].

Although existing LMs easily fail to calculate complex numbers, there is still a silver lining: with
the same context, LMs are more accurate and stable on simple numbers than complex numbers,
demonstrating that LMs have a strong aptitude for applying arithmetic principles to simple numbers.
This motivates us to leverage simple numbers as “anchors” to probe the implicitly inferred arithmetic
expressions from language models, and then explicitly apply the expressions on original complex
numbers. Specifically, as illustrated in Figure 1, when detecting complex numbers (e.g., 10, 477 and
7, 459) that are challenging for LMs, we first replace them by anchor numbers (10 and 7, etc) and use
LMs to output answers (3, etc). Then we inversely elicit the secret arithmetic relationship (x1 − x2)
inside LMs through anchor numbers and their corresponding answer, and finally explicitly applying
the arithmetic relationship on the initial complex numbers (10, 477− 7, 459) to produce the answer
(3, 018). In this way, our method combines the advances of LMs on understanding complex context
and memorizing simple numbers for reliable numerical reasoning.

In this paper, we present a novel framework to elicit the numerical reasoning knowledge hidden in LMs.
With simple numbers as anchors, we tackle the problem of inversely elicit the arithmetic expressions by
analytically solvable linear systems. Meanwhile, since the linear systems may contain noise, alternative
search-based method is further developed to increase robustness. Experimental results on several
representative numerical reasoning datasets demonstrate that our method is highly effective. More
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Paragraph:
As of the census of 2000, there 
were 10,477 households and 
7,459 families in the county.
Question:
How many more households 
are there than families?
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Answer: 3,01810,477 (𝑥!), 7,459 (𝑥")

1 Operand Proposal

As of the census of 2000, there 
were 25,764 people, 10,477

households, and 7,459 families 
residing in the county.

Paragraph: 
As of the census of 2000, there 
were 10 households and
7 families in the county.

Question:
How many more households 
are there than families?

Figure 1: The illustration of our proposed framework, which elicits numerical reasoning in language
models via Solving Linear Systems (SOLIS).

importantly, our framework does not need any additional training or annotation efforts, since it works
at test time, making it highly portable to different kinds of LMs and delivering consistent gains over
various LMs in zero-shot, few-shot and fine-tuning scenarios.

2 Numerical Reasoning via Solving Linear Systems

As mentioned above, current language models are vulnerable to complex numbers, whereas they work
consistently well when the operands are simple, i.e., relatively small integers. Such observations
motivate us to simplify the numbers before feeding them into language models, thus enabling reliable
neural-based numerical reasoning. In this section, we first provide an overview of our framework
SOLIS, and then we elaborate on each part of our framework in detail.

Method Overview Our method can be integrated into different language models at test time. For the
sake of clarification, in the following we refer to LMs that can steadily perform numerical reasoning as
reasoning LMs. As shown in Figure 1, SOLIS involves three stages: (1) Operand Proposal: given a
paragraph, we first identify the numbers which are necessary for the reasoning LM to perform numerical
reasoning (e.g., 10,477); (2) Number Substitution: these proposed operands are generally complex for
language models, and thus they need to be substituted with randomly chosen simple numbers (e.g., 10)
to make the model input simpler. Using the reasoning LM, we can obtain a set of predicted answers
with respect to each substituted paragraph after several substitutions. (3) Arithmetic Relationship
Inversion: using these paragraphs and their answers, we can inversely derive the secret reasoning flow
in the reasoning LM, i.e., the arithmetic expression between operands (e.g., y = x1 − x2). The final
answer is obtained by applying the expression on the original numbers.

Operand Proposal There are often many numbers involved in a paragraph, and it is hard to derive
how all of these numbers relate to each other arithmetically at the same time. So, it is important to
trim the prospective operands to a manageable size in the operand proposal stage. To address the issue,
inspired by prior works [18], we provide a novel technique that employs number perturbation and the
reasoning LM to measure the relevance. In prior works, relevance is assessed by the degradation of the
classifier score after erasing each pixel, where a substantial degradation indicates a strong relevance.
Similarly, we consider a number to be essential to the final answer if there is a difference between the
model predictions before and after perturbing it. Regarding perturbations, we implement it by adding a
small adjustment to each number in the paragraph (e.g., 98.5→ 98.6). More details about the operand
proposal mechanism can be found in Appendix B.

Number Substitution After the operand proposal stage, a random set of numbers is generated to
substitute the proposed operands sequentially. These numbers are referred to as anchor numbers below.
Each anchor number is an integer between 1 and 20, a range that we believe reasoning LMs can easily
handle. Meanwhile, to minimize the effects of number substitution, we strive to maintain the order
relationships among the numbers. Taking the example from Figure 1, we make the substitution number
corresponding to 10, 477 larger than the one corresponding to 7, 459 since 10, 477 is larger than 7, 459.
Notably, the random number substitution must be repeated several times (e.g., three times in Figure 1)
to obtain a group of anchor numbers. Along with the original question, each of these paragraphs is fed
into the reasoning LM to predict the answer, which we call the anchor answer. Typically, the number
of anchor answers must exceed the number of operands for the subsequent arithmetic relationship
inversion stage to be feasible.

Arithmetic Relationship Inversion Given a collection of anchor numbers and anchor answers, the
arithmetic relationship inversion stage investigates the relationship between these numbers and induces
an expression to reflect it. Taking the example from Figure 1, a typical expression can be y = x1 − x2,
where x1 and x2 are both anchor numbers while y is the anchor answer. Although the example
expression appears intuitive, deriving such an expression from data points is tremendously difficult
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because the solution space is theoretically infinite. To make it practicable, as a first step, we begin by
limiting the problem-solving space to compositions of binary operators, where each operator can be
addition, subtraction, multiplication or division, the most prevalent operators in numerical reasoning [6].
Meanwhile, there can be up to three compositions, which means the expression contains a maximum
of four operands. With such priors, the insoluble expression induction problem can be turned into a
linear system solving problem, where the anchor numbers, the anchor answers, and their compositions
constitute a linear system. In this way, the problem of expression induction can be tackled by the solving
algorithms for linear systems. Finally, the answer can be reached in a trustworthy and interpretable
manner by applying the derived expression to the original numbers.

3 Solving Algorithm

Given a paragraph and a question, we denote a group of anchor numbers as x = (x1, x2, . . . , xn)
and the arithmetic relationship as an expression f , which should produce the answer y by y = f(x).
The objective of solving algorithms is to recover f from different groups of anchor numbers X and
corresponding anchor answers y. We propose to transform and formulate the arithmetic relationship
inversion as solving a system of linear equations. Given expression f(x) with four fundamental
arithmetic operations, we transform the equation y = f(x) by multiplying denominators on both sides
when operator division exists, then we get:

a0 · C + a1 · x1 + a2 · x2 + a3 · y + a4 · x1x2 + . . .+ ak · (x1x2 . . . xny) = 0 (1)

For example, y = 1 − x1/x2 can be transformed to x2 − x1 − x2y = 0. Then uncovering f(x) is
equivalent to solving a = (a0, a1, . . . , ak), which are coefficients of all possible polynomial basis
combined by x1, , xn and y, denoted as p, where k = 2n+1 − 1. Multiple groups of anchors X and y
constitute multiple groups of values of polynomial basis, denoted as P, then Equation 1 can be denoted
as Pa = 0, which is a typical set of linear equations. Next, we introduce two different algorithms that
can solve a, namely analytical-based, and search-based algorithm.

3.1 Analytical-based Algorithm

To solve Pa = b, we can simply generate k+1 groups of anchor numbers as X and LMs’ answers as
y, compute P based on X and y, and finally get a = (P)

−1
b when P is in full rank. But notice that y

can be a linear weighted summation of x0, . . . , xn, the coefficient matrix P may not be full-ranked. To
address this issue, we generate k groups of anchor numbers and add an additional constraint by setting
|a| =

∑k
i=0 ai = 1. So we augment P with an all-one vector to P∗ and finally get a = (P ∗)

−1
b,

where b = (0, 0, . . . , 0, 1). In practice, randomly sampled groups of anchor numbers can form a
full-ranked P ∗ with a very high probability, and one can even add a buffer by sampling a bit more
groups of anchor numbers than k to constitute different P ∗s for cross validation. The analytic algorithm
is theoretically complete to derive arithmetic expressions in our pre-defined problem space. However,
in practice, LMs may generate incorrect answers even for anchor numbers, especially the expression is
complex, violating the analytic method which necessitates correct answers. To tolerate the constraint,
we present a search-based algorithm to solve a noisy linear system. The analytical theory can also well
for guiding the hyper-parameter of the search-based algorithm.

3.2 Search-based Algorithm

The search-based algorithm exhaustively explores the search space and finds out the most preferable
arithmetic expression. We constrain the search space of a in Equation 1 by: requiring a1−n ∈
{−1, 0, 1} for all coefficients of the non-constant terms, and for coefficient a0 of constant term C, one
can restrict the search range to a pre-defined set, e.g., a0 ∈ {−100,−1, 0, 1, 100} in our experiments for
efficiency, and this is different from the analytic method that can easily solve constants in expressions.
Constraints here mean that we only let this search algorithm cover f(x) with no more than one constant
for efficiency. We then transform all searched polynomial-basis-based equations backwards into
expressions because they have one-to-one mappings, e.g., from x2 − x1 − x2y = 0 to y = 1− x1/x2.
We denote the space of expressions as F, and for each fi ∈ F and each group of anchor numbers Xj

(using m to denote the number of groups), we get yij by applying fi to Xj .

We define the prediction error between the target expression f̂ and fi as ϵ(f̂ , fi), which is calculated
by ϵ(f̂ , fi) =

∑
j ϵij =

∑
j abs(ŷj − yij), and the number of occurrence of exact matching as ci. We

then find the most preferable expression with the minimum prediction error and the maximum number
of exact matching. The corresponding Algorithm can be found in Appendix C.
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Table 1: Experimental results on the valida-
tion set of DROP dataset.

Language Models EM(%) F1(%)

BART [9] 67.4 70.6
w. SOLIS 72.9 (+5.5) 76.1 (+5.5)

T5 [15] 61.0 64.6
w. SOLIS 69.9 (+8.9) 73.5 (+8.9)

TAPEX [10] 76.3 79.3
w. SOLIS 78.5 (+2.2) 81.6 (+2.3)

POET-SQL [14] 76.9 80.0
w. SOLIS 78.2 (+1.3) 82.0 (+2.0)

Table 2: Experimental results of SOLIS w. various solv-
ing algorithms on the DROP numeric subset.

Language Models Algorithm F1(%) on Hard F1(%) on Total

BART
– 30.4 66.4

Analytical 46.4 (+16.0) 69.3 (+2.9)
Search 64.8 (+30.4) 75.2 (+8.8)

POET-SQL
– 66.8 78.4

Analytical 73.3 (+6.5) 80.0 (+1.6)
Search 76.9 (+10.1) 81.4 (+3.0)

Table 3: Experimental results of different
methods on AddSub and MultiArith.

LLMs Setting AddSub MultiArith

PaLM Standard [3] − 42.2
(540B) Chain [20] 91.9 94.7

Zero-Chain [8] 66.6 63.8
GPT-3 w. SOLIS 89.4 (+22.8) 80.0 (+16.2)
(175B) Chain [20] 88.4 96.7

w. SOLIS 90.9 (+2.5) 98.7 (+2.0)

Table 4: Case study on derived expressions on DROP.
Intention Example Question with [Derived Expression] Proportion

Addition How many total . . . were there? [y = x1 + x2 + x3] 8.92%

Diff Constant How many in percent . . . weren’t . . . ?[y = 100− x] 36.49%

Subtraction How many more percentages . . . compared to
. . . ? [y = x1 − x2]

54.25%

Composition How many more . . . compared to . . . and . . . com-
bined ? [y = x0 − (x1 + x2)]

0.34%

4 Experiments
Datasets We perform experiments on DROP [6], AddSub and MultiArith, of which the latter two are
widely used subsets from MAWPS [17]. DROP is a reading comprehension benchmark that focuses on
numerical reasoning.As for MAWPS, it consists of math word problems which also require numerical
reasoning ability. On DROP, we inherit the official Exact Match(EM) and F1 to evaluate results; On
MAWPS, we use EM to evaluate results. More details can be found in Appendix D.
Backbone and Baselines On DROP, we adopt two kinds of LMs as our backbones, including (i)
Vanilla LMs: BART [9] and T5 [15], (ii) Reasoning LMs: TAPEX [10] and POET [14]. All models
are fine-tuned on the DROP train set. On AddSub and MultiArith, we adopt GPT-3 [1] with different
prompting techniques as our backbones: Chain-of-Thought Prompting (Chain) [20] and the Zero-shot
Chain-of-Thought Prompting (Zero-Chain) [8]. We also compare our results to the PaLM model [3].
Experimental Results We first evaluate suggested solving algorithms via their performance on the
DROP subset whose answers are numbers (i.e., numeric subset). Meanwhile, we select cases in which
the answer is greater than 1000, identify them as “hard” cases, and additionally report the performance.
As shown in Table 2, all of our proposed algorithms significantly improve the performance of LMs,
especially in hard cases. The full results of the performance comparison can be found in Appendix E.
Notably, since the search-based algorithm is the most effective, we apply it as the default algorithm
in SOLIS. Table 1 shows the experimental results of different models on DROP dataset. As shown,
SOLIS can bring consistent and significant improvements over all backbone LMs, especially for the
vanilla LMs. On T5, for instance, it could be boosted by a maximum of 8.9% with SOLIS. Table 3
presents the experimental results on AddSub and MultiArith. The results indicate that our approach is
surprisingly effective for giant LMs, and can further boost the chain-of-thought.
Model Analysis In addition to performance improvement, SOLIS features the ability to derive an
arithmetic expression for each question, whereas no such information is available during training. To
better understand if these expressions align with question intentions, we collect all derived expressions
on DROP and categorize them into four types in Table 4. As demonstrated, the majority of expressions
contain addition and subtraction between variables and constants, which are largely consistent with the
question intention, highlighting the superior interpretability of SOLIS.

5 Conclusion
In this work, we present SOLIS, a framework which can elicit numerical reasoning in language models
at test time. Motivated by the fact that language models excel at simple numbers, SOLIS uses simple
numbers as anchors to inversely derive the implicitly inferred arithmetic expressions from language
models, and subsequently apply these expressions to the original numbers to perform numerical
reasoning. Experimental results on several numerical reasoning benchmarks demonstrate that SOLIS
can be integrated to a variety of language models, and can greatly improve their performance in
zero-shot, few-shot, and fine-tuning scenarios.
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A Preliminary Study Details

In this section, we will first demonstrate the brittleness of language models’ ability on arithmetically-
related tasks. Unlike arithmetic benchmarks such as AddSub or MultiArith [17] which contain natural
language context for each sample, we directly generate and feed the arithmetic expressions and
test the performance on language models. This is done to reduce potential perturbing factors and
highlight the models’ calculating ability. We impose constraints on the complexity of the expressions:
we only study the four fundamental operations, and demand no more than 4 operands, where each
operand’s integer range is less then 10, 000 and floating point precision is less than 4. To conduct a
systematic investigation, we first produce F which represents the set of all the expressions satisfying
our constraints. We randomly sample numbers within the limits of range and precision as the operands.
For one expression f ∈ F with a specified range and precision, we randomly generate 50 samples. We
evaluate the language model on these samples and denote this synthesized task as MathExp which
stands for Math Expressions.

We sample a maximum of 50 expressions for each different settings of complexity, and test these
samples using large scale language model GPT-3 [1]. We conduct the study on GPT-3 in a few-shot
manner: to unleash its potential, we pre-pend 10 to 20 expressions (having the same f , integer range,
and floating point precision as the tested sample) together with the answers as the prompt. We then call
the OpenAI API2 to get all the predictions, and evaluate the performance accordingly.
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Figure 2: Performance with different floating point precision (left) and integer range (right).

Results in Figure 2 indicate that even the latest powerful GPT-3(Code-Davinci-002) fails to achieve
a satisfactory performance: (i) the prediction accuracy decreases largely as the number gets more
complex, i.e., integer range or floating point precision of operands increases; (ii) the prediction accuracy
also drops dramatically as the arithmetic relationship getting more complex, i.e., number of operands
increases.
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Figure 3: Performance over different floating
point precision (left) and integer range (right) on
MathExp of GPT-3 w. search-based algorithm.
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Figure 4: Performance over different floating point
precision (left) and integer range (right) on Math-
Exp of GPT-3 w. analytical-based algorithm.

We also present the model performance on MathExp of GPT-3 with different solving algorithms in
Figure 3 and Figure 4. We can conclude that: (1) both algorithms are not sensitive with either the

2https://openai.com/api
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floating point precision or the integer range; (2) the search-based algorithm is most robust than the
analytical-based algorithm with respect to the number of operands.

B Operand Proposal Details

In Section 2, we mention that the textual context on a realistic dataset may be noisy, i.e., contains
irrelevant numbers, thus we need to locate the operand number first. We substitute 10 times for each
number appearing in the paragraph, if the output gives ≥ 3 different prediction numbers out of 10, we
decide the current tested number is involved to the answer. Moreover, we substitute numbers following
a template: suppose the original number x is with precision p, then the substituted numbers can be
represented as x+ k · 10p, where k ∈ {−5,−4,−3,−2,−1, 1, 2, 3, 4, 5}.

C Search-based Algorithm

Algorithm 1 SEARCH

Input: parameters X, ŷ,F, cthreshold
Output: Most preferable expression f̃

1: while j < m do
2: for fi ∈ F do
3: y∗ij ← fi(Xj)
4: ci ← ci + 1(y∗j == ŷij)
5: ϵi ← ϵi + |y∗j − ŷij |
6: end for
7: j ← j + 1
8: end while
9: i∗c ← argmax c, i∗ϵ ← argmin ϵ

10: if ci∗ ≥ cthreshold then f̃ ← fi∗c
11: elsef̃ ← fi∗ϵ
12: end if

D Experiments

D.1 Experimental Setup

Table 5: Statistics of DROP dataset

Dataset
Train Dev

# Questions # Docs # Questions # Docs

DROP 77, 409 5, 565 9, 536 582

Table 6: Statistics of MAWPS dataset
Subset # Questions
AddSub 395
MultiArith 600
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For BART, we implement the fine-tuning methods using the Huggingface transformers library [21]
on 4 V100 16GB GPUs. We use BARTLARGE[9] as our backbone. We use same-scale reasoning-
pretrained POET-SQL and TAPEX models in experiments. For T5, we implement its fine-tuning on the
Huggingface transformers library on A100 GPUs. We use T5LARGE [15] as our backbone.

D.2 Experimental Details on DROP

Fine-tuning Details For all fine-tuning methods, we select the default max token length for each model.
We set the max token length of generation as 96. To save training time, we set early stop mechanism:
we evaluate the EM and F1 score per 500 or 1000 steps, if the performance does not increase in the
latest 20 evaluations, we stop the training and save the best checkpoint.

On DROP, we pre-pend the question to the given paragraph. For multi-span answer, we insert “;”
between each span and make up the final answer. For T5LARGE, we also insert “</s>” token between
the question and the given paragraph. Since most LMs’ checkpoints on DROP is currently not off-the-
shelf, we re-implement them and compare to the results reported in previous works. We present the
comparison results in Table 7.

Table 7: Performance Comparison on DROP between reported results in previous works and our
re-implementation. Results marked with ∗ represent our re-implementation results.

Models EM (%) F1 (%)
BART [14] 66.2 69.2
BART∗ 67.4 70.6

T5 [22] – 64.6
T5∗ 61.0 64.6

POET-SQL [14] 77.7 80.6
POET-SQL∗ 76.9 80.0

D.3 Hyperparameter Selection

For fine-tuning, we apply Adam [11] optimizer. The fine-tuning epochs are set as 50. For BART
models (i.e., BART and POET-SQL), we follow previous works [14] to set the batch size as 128 and
the learning rate as 3× 10−5. For T5, we decrease the batch size to 32 due to the computational budget.
The early stop technique is used to save training time. For GPT-3 API, we keep the temperature as
default setting 0, and set the maximum output tokens to 128. As for anchor number groups: the group
size is 6/8/10 corresponding to corresponding to 2/3/4 operands on DROP; the group size is 4 on
AddSub, and 10 on MultiArith because MultiArith requires more compositional operations.

D.4 Design Choices on DROP

Following previous work, we apply two general-purpose numerical designs on the DROP dataset. First,
we employ the character-level rather than subword-level number representation, which proves to be
more effective [19, 14]. Second, we employ the reverse decoding technique, which proves to be a
successful design to mimic arithmetic carry [7]. Meanwhile, as mentioned above, the search-based
algorithm has difficulties in covering expressions including constants. Considering the constant 100 is
frequently used for percentage calculations (e.g., “How many percent of the national population does
not live in Bangkok?”), we add it to be one candidate in DROP.

E More Results on DROP

We present the performance breakdown of F1 on dev set of DROP in Table 8 Apart from fine-tuning
models on DROP dataset, we also use GPT-3 to conduct a study on few-shot learning. We pre-pend 10
random training samples in train set, and run all cases where answer type equals to “number”. We also
apply our search-based algorithm on GPT-3. To save API calling time, we only substitute the number
for one time. Table 9 presents the F1 score comparison.
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We also summarize common calculation error cases in our tested language models and present some of
them for case study in Table 10, which again illustrates the unreliability of language models.

Table 8: Breakdown of model F1 score by answer types on the dev set of DROP.
Models Number Span Spans Date Total
BART 66.3 80.3 66.0 56.7 70.6

w. SOLIS 75.2 80.5 66.7 55.7 76.1
T5 55.5 81.6 73.0 53.5 64.6

w. SOLIS 69.8 81.8 73.9 53.5 73.5
TAPEX 77.8 84.3 72.9 62.8 79.3

w. SOLIS 81.4 84.4 73.0 61.7 81.6
POET-SQL 78.4 84.6 76.6 63.4 80.0

w. SOLIS 81.4 84.9 76.9 62.6 82.0

Table 9: Performance of GPT-3 w. SOLIS on the DROP numeric subset.
Language Model Algorithm F1(%) on Hard F1(%) on Total

GPT-3 (175B) - 42.5 64.7
Search 59.9 (+17.4) 68.7 (+4.9)

Table 10: Common calculation error cases on DROP dataset.
Error Type Example Prediction Label
Carry Error . . . the size of the black-white IQ gap in the United States

decreased from 16.33 to 9.94 IQ points. . . .
6.49 6.39

Q: How many IQ points did the black-white IQ gap de-
crease in the United States in a 2013 analysis of the Na-
tional Assessment of Educational Progress?

Missing High Digit . . . The Department of Tourism recorded 26,861,095 Thai
and 11,361,808 foreign visitors to Bangkok in 2010. . . .

499287 15499287

Q: How many more Thai visitors did Bangkok have in
2010 compared to other foreign visitors?

Extra Integer digit . . . Rayner nailed a 23-yard field goal . . . Rayner got a 54-
yarder and a 46-yarder to end the half . . .

111113 123

Q: How many total yards of field goals did Dave Rayner
have?

Extra Float Number
Digits

. . . have estimated the IQ means of 17-year-old black,
white, and Hispanic students to range respectively from
90.45-94.15 . . .

3.75 3.7

Q: How many points difference is the IQ range in 17-year-
old black students?

Insufficient Precision . . . The Diocese of Karelia has 22,000 church members in
12 parishes. . . .

1833 1833.33

Q: How many church members approximately are in each
one of the 12 parishes?
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